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Abstract

Advanced composites have excellent mechanical properties at low weight and can be
realized as complex components that can be manufactured quickly and cost-effectively.
Due to these outstanding characteristics, these materials are used in many different
areas of industry, such as aviation and automotive. Industrial 3D X-ray computed
tomography (XCT) is used as a non-destructive testing (NDT) method to inspect the
quality of components and to develop new advanced composite materials. XCT has
the ability to determine the inner and outer geometries of a specimen non-destructively.
For example, interesting features in fiber-reinforced polymers (FRPs) such as fibers,
pores, and higher-density inclusions can be detected. The high resolutions of modern
XCT devices generate large volume datasets, which reveal very fine structures. However,
this high information content makes the exploration and analysis of the datasets with
conventional methods very difficult and time-consuming.
In this doctoral thesis, typical NDT application scenarios of advanced composites using
XCT are addressed and visual analysis methods and visualization techniques are designed
to provide material experts with tools to improve their workflow and to efficiently analyze
the XCT data, so that domain-specific questions can be answered easily and quickly.
This work describes a novel visualization system for the interactive exploration and
detailed analysis of FRPs, a tool for the visual analysis and evaluation of segmentation
filters to accurately determine porosity in FRPs, and a more general system for the
visual comparison of interesting features in an ensemble of XCT datasets are presented.
The results of the individual visualization systems are presented using real-world and
simulated XCT data. The proposed visual analysis methods support the experts in
their workflows by enabling improved data analysis processes that are simple, fast, and
well-founded, and provide new insights into material characterization with XCT.
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Kurzfassung

Hochleistungsverbundwerkstoffe weisen hervorragende mechanische Eigenschaften bei
gleichzeitig geringem Gewicht auf und erlauben es, komplexe Bauteile zu realisieren,
die relativ schnell und kostengünstig produziert werden können. Aufgrund dieser Be-
sonderheiten werden diese Werkstoffe in vielen verschiedenen Bereichen der Industrie,
wie etwa im Flugzeug- und Automobilbau verwendet. Um Bauteile in Hinblick auf ihre
Qualität überprüfen beziehungsweise neue Hochleistungsverbundmaterialien entwickeln
zu können, wird die industrielle 3D-Röntgencomputertomographie (XCT) als zerstörungs-
freies Prüfverfahren eingesetzt. Die industrielle Röntgencomputertomographie besitzt
dabei die Fähigkeit, die inneren und äußeren Geometrien einer Probe zerstörungsfrei zu
bestimmen. So können interessante Merkmale in faserverstärkten Kunststoffen (FRPs),
wie zum Beispiel Fasern, Poren, und Einschlüsse erfasst werden. Die hohen Auflösungen
von modernen XCT-Geräten erzeugen dabei große Volumendatensätze, die sehr feine
unterschiedliche Strukturen erkennen lassen. Dieser hohe Informationsgehalt führt aber
dazu, dass die Exploration und Analyse der Datensätze mit herkömmlichen Methoden
nur sehr schwer zu bewerkstelligen und zeitaufwendig ist.
Im Rahmen dieser Dissertation werden typische Anwendungsszenarien der zerstörungsfrei-
en Prüfung von Hochleistungsverbundwerkstoffen mittels XCT aufgegriffen und visuelle
Analysemethoden und Visualisierungstechniken entworfen. Damit werden Materialex-
perten Werkzeuge zur Verfügung gestellt, mit denen sie ihre Arbeitsabläufe verbessern
und die XCT-Daten effizient analysieren können, sodass fach-spezifische Fragestellungen
einfach und schnell beantwortet werden können. Dazu wird ein neuartiges Visualisie-
rungssystem zur interaktiven Exploration und detaillierten Analyse von FRPs vorgestellt,
ein Werkzeug zur visuellen Analyse und Evaluierung von Segmentierungsfiltern, um die
Porosität in FRPs genau bestimmen zu können und ein generelles System für den visuel-
len Vergleich von interessanten Merkmalen in einem Ensemble von XCT-Datensätzen.
Dabei werden die Ergebnisse der einzelnen Visualisierungssysteme anhand von realen
und simulierten XCT-Daten vorgestellt. Die vorgeschlagenen visuellen Analysemethoden
unterstützen die Experten in ihren Arbeitsabläufen, indem sie verbesserte Datenanalyse-
prozesse ermöglichen, die einfach, schnell und fundiert sind und neue Erkenntnisse auf
dem Gebiet der Materialcharakterisierung mit XCT liefern.
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CHAPTER 1
Introduction

The quest for greater efficiency, environmental protection, safety, and comfort is the
driving force in industrial research for the development of new cost-effective, functional and
lightweight components. Advanced composite materials, such as fiber-reinforced polymers
(FRPs), meet these requirements and are of great interest for today’s industry due to
their impressive mechanical properties and their versatile processing and application
possibilities. Components that are currently manufactured from conventional materials
such as aluminum or steel can be replaced by these new high-performance materials. The
functionality of such components is not impaired, but they have increased strength and
stiffness with lower weight at the same time [FL96, FA13].
The industrial sectors aerospace, automotive, wind energy, electrical engineering, and
sport and leisure have recognized the potential of FRPs and will rely on these material
systems in the coming years. As reported by Sauer et al. [SKW17], the global demand
for carbon fiber-reinforced polymers (CFRPs) is growing at an annual rate between
10 and 13%. The global demand for carbon fiber-reinforced polymers was 59,000 tons
in 2011 and is forecasted at 194,000 tons for 2022. At 60% (US$ 11.66 billion), the
aerospace industry accounts for the largest share of total worldwide turnover for the
carbon composite market due to high quality standards and approval costs. This can be
attributed to developments in civil aviation. For example, the share of fiber-reinforced
composite materials in newly developed commercial aircrafts such as the A350 (Airbus)
and the 787 Dreamliner (Boeing) has increased to more than 52% in recent years
[Hes14, Giu15]. In addition, the carrier rockets Ariane 6 (ESA/ASL) [Bla18] as well as
the Falcon9 (SpaceX) [Mil18] are designed in large proportions with the aid of carbon
composites.

Due to the increasing share of advanced composites and respective components, the
demand for non-destructive testing (NDT) is also growing rapidly, as it covers the topics
of defect analysis and material characterization. A method of NDT is industrial 3D
X-ray computed tomography (XCT). It has the ability to determine the inner and outer
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1. Introduction

geometries of a component non-destructively [DCCK+14]. Currently available XCT
systems are capable of resolving structures of less than one micrometer [KPR12]. With
these high-resolution measurements, it is possible to resolve internal material features such
as individual fibers, pores, and inclusions and to determine their orientation and length.
These possibilities are decisive for materials research and development, as the mechanical
processes within a specimen can be deduced and important component properties in terms
of stiffness, strength, and ductility can be determined. In addition, XCT is increasingly
used in quality control and dimensional metrology to check the material qualities and
tolerances required by industry.

Since the resolution of XCT systems is constantly being improved and as a result the
information content of a volume dataset increases, the areas of NDT, i.e., error analysis
and material characterization, are confronted with new challenges in order to reasonably
explore and analyze the immense amount of data. Therefore, suitable and meaningful
visualization techniques and image processing algorithms are necessary, for example to
answer questions regarding material fatigue of a component or simply to improve the
workflows of the experts.

1.1 Advanced Composites

Composite materials in general consist of two or more components, a reinforced agent
or a selected filler and a compatible matrix binder (or resin). The components remain
separated within the final structure, but nevertheless act together and provide improved
material properties compared to conventional materials, which cannot be achieved by
any of the components alone [Lub82]. The components are mostly fibers surrounded
by a matrix. The fibers serve as the actual reinforcement, have a high tensile strength,
but a low shear strength (i.e., they are brittle). They are made for instance of glass,
carbon, aramid, boron, silicon carbide, alumina, high-density polyethylene, basalt, or
cellulose. The matrix helps to distribute the load from the reinforcement, absorbs energy,
reduces stress concentrations and prevents crack propagation. At the same time, the
matrix should have a relatively high shear strength in order to make the fibers resistant to
abrasion and other external environmental influences. The matrix consists of a material
that can be assigned to one of four categories: polymers, metals, ceramics, and carbon
[Zwe06, Che12].

In this thesis we concentrate on fiber-reinforced polymers (or fiber-reinforced plastics), a
group of composite materials consisting of a polymer matrix (resin) reinforced by fibers.
The polymer is usually a thermosetting epoxy, vinyl ester, or polyester plastic. The
fibers are typically made of carbon or glass. Due to their low weight, corrosion resistance,
high strength and stiffness, fiber-reinforced polymers are ideal for designs that require
weight savings, precision engineering, tight tolerances, and simplification of components
in production and operation. For example, carbon fiber-reinforced polymers (CFRPs)
have five times the relative stiffness of steel, and glass fiber-reinforced polymers allow
weight savings of up to 60% over aluminum. In addition, fiber-reinforced polymers can
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1.1. Advanced Composites

be produced cost-effectively because the expensive and scarce resins can be stretched
with inexpensive and readily available fillers. For example, an injection molded polymer
part can be produced cheaper, faster, easier, with more accurate tolerances, and higher
material strength than a similar aluminum or steel part [Mas13].

In order to produce a composite structure, a large number of fibers are incorporated into a
thin layer of the matrix, which forms a lamina (or ply). A lamina can be constructed from
continuous (long) fibers or discontinuous (short) fibers. If continuous (long) fibers are
used, their orientation can be unidirectional (i.e., all fibers are oriented in one direction,
see Figure 1.1 A), bidirectional (i.e., fibers are oriented in two directions, typically
perpendicular to each other, see Figure 1.1 B) or multi-directional (i.e., fibers are oriented
in more than two directions, see Figure 1.1 C). A composite material with a lamina having
unidirectionally oriented fibers, has the highest strength in the longitudinal direction of
the fibers and a very low strength in the transverse direction. For a lamina having bi-
and multi-directional fibers, the strength in the longitudinal and transverse directions can
be changed by varying the fiber quantity and architecture. This means that forces acting
simultaneously in several directions can be absorbed by fibers aligned in several different
directions. Bi- and multi-directional fibers can be produced in two or three dimensions
using weaving, knitting, braiding, and stitching processes commonly used in the textile
industry (see Figure 1.2 A–D). This improves the interlaminar properties and prevents
delamination. The discontinuous (short) fibers can be oriented either unidirectionally (see
Figure 1.1 D) or randomly (see Figure 1.1 E). Discontinuous fiber-reinforced composites
have lower strength than continuous fiber composites. However, if the fibers are randomly
oriented, the same mechanical and physical properties can be achieved in all directions (in
the plane of the lamina). In order to support a certain load or to maintain deflection in
a fiber-reinforced composite structure, several laminas are stacked in a specified sequence
and consolidated into a laminate. Different laminas in a laminate can contain fibers
either all in one direction or in different directions. By properly orienting the fibers in
various layers (see Figure 1.1 F), the difference in strength in different directions can be
reduced [Mal07].

The process of introducing fibers into a polymer matrix can be divided into two categories.
In the first category, the fibers and matrix are processed directly into the final product
or structure, e.g., by using filament winding or pultrusion. In the filament winding
process, machines pull fiber bundles through a wet resin bath and wind them in a
specific orientation over a rotating steel mandrel. The components are cured either at
room temperature or at elevated temperatures. In the pultrusion process, continuous
strand rovings and mats are pulled through a resin bath, a series of preformers and
finally through a long preheated die. The preformers evenly distribute the fiber bundles,
squeeze out the excess resin and bring the material to its final configuration. The final
shaping, compaction, and curing takes place in the die. A series of tension rollers or
blocks then pull the cured pultruded structural form (e.g., beam) out of the die. In
the second category, fibers are incorporated into the matrix to prepare ready-to-mold
sheets, which are available in two basic forms, prepregs and sheet-molding compounds
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1. Introduction

A B

C D

E F

Figure 1.1: The different orientation configurations of continuous fibers and discontinuous
fibers in a lamina (or ply): (A) Unidirectional continuous fibers, (B) bidirectional
continuous fibers, (C) multi-directional continuous fibers, (D) unidirectional discontinuous
fibers, and (E) random discontinuous fibers. (F) A laminate is formed by stacking several
various laminas. Adapted from [Mal07].

(SMCs). Prepregs are thin fiber sheets (continuous rovings, mats, or fabrics) impregnated
with predetermined amounts of an evenly distributed polymer matrix, usually epoxy.
These impregnated sheets can be stored and later processed to form laminated structures.
Prepregs are primarily used in the aerospace industry to manufacture components, e.g.,
winglets. For this purpose, prepreg plies are stacked with the desired fiber orientation
angle as well as with the desired sequence in an open mold. The material is covered with
release film, bleeder material and a vacuum bag. A vacuum is built up on the component
and the entire mold is placed in an autoclave (heated pressure vessel). The component
is cured with a continuous vacuum to remove trapped gases from the laminate. This
process takes several hours, but enables precise control of the molding process to achieve
the required material quality in the aerospace industry. SMCs are thin sheets of fibers
precompounded with a thermoset resin and mainly used in the compression molding
process. The SMC sheets are produced on a sheet-molding compound machine. The resin
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1.1. Advanced Composites

A B

C D

Figure 1.2: Different arrangements of continuous fibers in a composite (fiber architecture).
(A) 2D bidirectional woven fabric. (B) 2D weft-knitted fabric. (C) 2D biaxial braided
fabric. (D) stitching threads and woven fabrics create a 3D architecture. Adapted from
[Mal07].

paste is applied to a polyethylene carrier film. This carrier film runs under a chopper that
randomly cuts the continuous fiber rovings onto the bottom resin paste. After covering
the fibers with the top resin paste, another polyethylene carrier film is applied. The
carrier films are compacted by multiple rolls to form a sheet, which is wound around a
take-up roll and allowed to mature between one to seven days at 30° C [Mal07].

During the production of advanced composite materials, irregularities occur in the
manufacturing process, which cause the mechanical material properties to deviate from
the designed specifications. These irregularities can be divided into matrix, fiber, or
interface defects. The most significant type of defects are voids (or pores), i.e., areas
that are not filled with resin and fibers (matrix defects). Other defects that may occur
during the manufacturing process concern the fibers or the interface between fibers and
matrix. Fiber defects are, e.g., misaligned fibers or broken fibers due to excessive fiber
curvature during production or excessive friction in the textile machine. Interface defects
are for example fiber/matrix debondings and interlaminar delaminations. Another matrix
defect is incomplete resin hardening. Irregularities in the material caused by loading are
referred to as damage and are, e.g., matrix cracks, fiber fractures, and fiber pull-outs
[AAS+16, MGVVL19].
In order to better understand these defect-damage mechanisms and to improve material
development and production, suitable measuring and testing procedures are necessary.

5



1. Introduction

These allow the specialists to detect these defects and to evaluate them qualitatively
and quantitatively with suitable techniques. As an example, for the determination of
the porosity value in fiber-reinforced polymers (FRPs), various testing methods such
as ultrasonic attenuation, acid digestion, materialography, and active thermography
exist [KPSS10]. However, these methods often only achieve inaccurate results, do not
provide a spatial representation of the specimen (or a look inside the specimen), introduce
measuring errors, and are destructive. A measuring and testing technique that avoids
these disadvantages is industrial 3D X-ray computed tomography.

1.2 Industrial 3D X-ray Computed Tomography
The first prototype of an X-ray computed tomography (CT) scanner was developed in
1968 by Godfrey Newbold Hounsfield as a medical imaging method. The experiments
were performed on a human brain prepared with formalin, the brain of a living calf,
and the kidneys of a pig [Cie11]. Since then, CT has been using X-ray radiation and
measuring their absorption, making it suitable for studying materials with high atomic
numbers. It uses X-rays to take a series of 2D projection images of an object from many
positions around an axis of rotation. By using suitable computer algorithms, these images
are reconstructed into a 3D model that reveals the inner and outer geometries of the
scanned object [KH18, DCCK+14]. The unique ability of CT to create a holistic model
of an object accurately, contact-free, and non-destructively has also been recognized by
industry. In recent decades, CT as a non-destructive testing (NDT) method entered
many different industrial applications such as functional testing, defect analysis, material
characterization, simulation, and dimensional metrology.

Industrial 3D X-ray computed tomography (XCT) devices differ fundamentally from
medical CT devices. In medical CT systems, the X-ray source and detector rotate
around the patient, in XCT systems the object rotates in the X-ray beam, the source
and detector remain stationary. Most XCT systems of industrial applications use a cone
beam geometry in combination with a flat-panel detector. In such a setup, the specimen
is placed on a rotary table between an X-ray source and a detector. The specimen is
penetrated by X-rays. As X-rays pass through the specimen, radiation is absorbed by the
specimen. The incident X-rays are attenuated depending on the sample thickness, the
density and the atomic number of the material. The remaining part is transferred by the
scintillation layer of the X-ray detector to visible light, which is finally recorded as a 2D
projection image. The resolution and accuracy of XCT systems can be varied by changing
the geometrical resolution between source, object, and detector. If the distance between
the source and the object is small, a higher image magnification and pixel resolution is
achieved to resolve small material features. If the object is closer to the detector, a larger
volume can be scanned at once but at a lower resolution.
In order to generate a volumetric model of the specimen, several hundred projection images
(typically 800–2400) are acquired step-wise during a 360° rotation. These projection
images are finally combined with the aid of reconstruction algorithms, usually with
filtered backprojection introduced by Feldkamp et al. [FDK84], to compute a 3D volume.
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X-ray

Source

Specimen

Rotary Table

Detector

Figure 1.3: Basic principle of a cone beam XCT system. The conically emitted X-rays
penetrate the specimen. The attenuation of the X-rays is converted into a 2D digital
projection image at the detector.

The volumetric data thereby contain the spatial attenuation values and the corresponding
information about the outer and inner microstructure of the specimen. Figure 1.3 depicts
the basic principle of a cone beam XCT system.

Due to the cone beam geometry and the high X-ray doses of the XCT devices, the
requirements of the industry for high resolutions and accuracies can be achieved. As a
result, the scanning parameters of XCT devices differ significantly from those of medical
CT devices. In the following paragraphs, two XCT devices at the University of Applied
Sciences Upper Austria – Wels Campus are described, which were used to measure the
specimens of this thesis. The first device is a Nanotom 180 NF (GE Phoenix|X-Ray),
which has a 180 kV nanofocus X-ray source with a minimum focal spot diameter below
one micrometer (see Figures 1.4 A and B). Thereby, a minimum voxel size of 0.5 µm
can be achieved. The second device is a SkyScan 1294 (Brucker) desktop phase-contrast
X-ray microtomograph with integrated grating Talbot-Lau X-ray interferometer for the
simultaneous extraction of attenuation contrast, differential phase contrast, and dark-field
contrast images (see Figures 1.4 C and D). Its microfocus X-ray source with a minimum
focal spot diameter of 33 µm enables a minimum voxel size of 5.7 µm.
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A B

• 180 kV nanofocus X-ray source with a 

min. focal spot diameter of < 1 µm

• 2304 × 2304 pixel 12 bit detector

• Min. voxel size: 0.5 µm

• Max. specimen diameter: 68 mm

• Max. specimen height:  150 mm

Nanotom 180 NF Technical Specifications

• 60 kV microfocus X-ray source with a 

min. focal spot diameter of 33 µm

• 4000 × 2672 pixel 12 bit detector

• Min. voxel size: 5.7 µm

• Max. specimen diameter: 20 mm

• Max. specimen height: 60 mm

Skyscan 1294 Technical Specifications

C D

Figure 1.4: XCT devices at the University of Applied Sciences Upper Austria – Wels
Campus. (A) The Nanotom 180 NF high-resolution submicro-CT system with (B)
flat-panel detector, turntable with a mounted CFRP specimen, and X-ray source. (C)
The Skyscan 1294 desktop phase-contrast X-ray microtomograph, which shows (D) the
opened cabin with a mounted CFRP specimen.
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With these XCT devices it is possible to perform high-precision 3D inspections of fiber
architectures, manufacturing defects, and damage accumulations non-destructively in
advanced composites. Thus, it is now possible to examine cross-sections, which were
previously only possible by means of time-consuming, expensive and skilled mechanical
sectioning with the danger of damage or material loss [GWW18]. For example, the
subtle material-determining properties, like fibers and pores in fiber-reinforced polymers,
can be characterized with XCT. Figure 1.5 depicts the resulting 3D dataset of a high-
resolution XCT scan of a CFRP specimen with endless carbon fiber rovings embedded in
an epoxy resin matrix. The specimen was produced using the prepreg manufacturing
process (see Section 1.1). The prepreg layers are stacked on top of each other. The fiber
orientation of the individual layers runs alternately along the z-axis and the y-axis (see
Figure 1.5 A and B). Figure 1.5 C presents a 2D cross-section of the XCT data. The
fibers and the matrix (resin) appear in light gray, the pores (air) appear in dark gray.
The average carbon fiber diameter is approximately seven microns.

A B

C

Fibers along

the z-axis

Fibers along

the y-axis

Pores

Resin-rich area 

(no fibers)

65 µm

2D cross-section

Z

Y

Figure 1.5: (A) An XCT dataset of a CFRP specimen with (B) stacked fiber layers
showing (C) a 2D cross-section with interesting features, e.g., fibers and pores.
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1.3 Contributions of the Thesis

Advanced composites have become increasingly important in many areas of industry (e.g.,
aviation and leisure) due to their high strength-to-weight ratio. XCT plays an important
role in this context, as it facilitates to precisely and non-destructively acquire the outer and
inner microstructures of composite materials. Therefore, significant insights are gained
in the fields of material characterization, development, and inspection. For example,
non-destructive testing (NDT) practitioners use these advantages of XCT to obtain a
comprehensive and very detailed analysis of their test specimens. However, modern XCT
devices generate large-volume datasets with very high resolution. Consequently, very
fine structures can be detected. This high information content causes big challenges in
the exploration and visualization of XCT datasets and limits the derivation of material
properties.

The overall goal of this thesis is to improve and augment the current analysis workflow for
characterizing advanced composite materials scanned with XCT through meaningful visu-
alizations and interactive visual analysis tools. For this reason, three typical application
scenarios of NDT using XCT, i.e., fiber characterization, porosity-value determination,
and feature comparison in multiple volumes, are addressed. With the help of the following
contributions, in the form of novel visualization tools, the domain-specific questions in
the respective areas are answered. The contributions are based on research papers and
are described in detail in the Chapters 2, 3, and 4:

• Interactive exploration and visual analysis of fibers in advanced compos-
ites. A typical XCT dataset of an FRP specimen contains hundreds of thousands
or more fibers. In such a fiber dataset, e.g., the position, length, and orientation
of each individual fiber is of interest to the domain experts. The manual analysis
of a fiber dataset, e.g., with 2D slice views, is very difficult with conventional
analysis tools. This poses the question of how to adequately analyze the vast
amount of information to characterize an FRP specimen in detail with respect to
its fiber content. In order to answer this domain-specific question, we designed the
FiberScout research prototype. It interactively explores and visually analyzes the
arrangement, length, and orientation of fibers in FRPs in detail. By using suitable
overview visualizations, the individual fiber lengths, fiber orientations, as well as the
shape of entire fiber layers are comprehensibly illustrated. Furthermore, the fibers
can be highlighted and classified according to their different fiber characteristics in
order to reveal hidden relationships in the fiber data.

• Visual analysis and evaluation of porosity in fiber-reinforced polymers.
Unlike fibers, which are purposely introduced into FRPs and have a positive
effect on the mechanical properties, pores in FRPs occur unintentionally during
the manufacturing process and have a negative effect. When analyzing an FRP
component scanned with XCT, the quantitative determination of the pores through
the porosity-value, plays a decisive role for the experts. Various segmentation
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algorithms with different parameter settings are used to detect the pores in an
XCT dataset. Depending on the material and the XCT scan, the one or the
other algorithm segments interesting structures as pores better or worse. For the
domain specialists, the question arises which segmentation algorithm with which
parameter setting is best suited for a precise porosity-value determination for the
respective material. Together with domain experts, we designed PorosityAnalyzer,
a research prototype for the visual analysis and evaluation of segmentation pipelines
to determine the porosity in FRPs. The tool allows the user to set up different
segmentation pipelines, to sample the involved parameter spaces, and to calculate
the results. The segmentation results can then be systematically evaluated and
compared with each other using comprehensive visualizations. Thereby, the visual
knowledge discovery follows a drill-down approach. It allows the user to perform
a visual analysis from the data overview to the most detailed representations of
the results by selecting the most interesting data portion on each level and then
passing this on to the next level.

• Visual comparison of interesting features in 3D volumes. During the close
collaboration with material experts, it turned out that not only fibers or pores in
advanced composites are of great interest for them, but also features with arbitrary
shapes such as cracks, higher-density inclusions, and material interfaces. The image
quality of the features in XCT datasets depends significantly on the reconstruction
and image processing algorithms and their different parameter settings. Because of
this circumstance the experts try to select and develop the algorithms and their
parameters in such a way that the features are represented with the highest possible
image quality. To achieve this, the experts generate many XCT datasets (containing
features) with different algorithms and different parameter settings and evaluate
them. Usually, the numerous feature volumes are compared with 2D slice views.
Finding and comparing the differences in such a volume ensemble is very difficult
and insufficient due to the vast amount of data. The domain-specific question arises
how to efficiently analyze an ensemble of XCT volumes with regard to image quality
and features that are often only slightly different. To tackle this challenge, we
developed Dynamic Volume Lines, a research prototype for the visual comparison
of 3D volumes through Space-filling Curves. It abstracts an ensemble of XCT
volumes to one-dimensional line plots. A nonlinear scaling based on the intensity
variations in the ensemble is applied to the line plots to better use the available
screen space. The nonlinear scaling emphasizes regions with high variations by
expanding them and compressing uninteresting regions. Interactive 2D and 3D
comparative visualizations allow the user to select and evaluate interesting feature
regions.

The significance of the presented visualization contributions for the field of visual com-
puting emerges from the challenges identified by Heinzl and Stappen [HS17]. In their
state-of-the-art report, they point out the importance of visual computing to support
research endeavors in the field of material science. Their systematic survey examines
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the intersection of both research domains by analyzing the existing body of literature,
identifying the main tasks, and reviewing data and techniques from both disciplines. As
a result, the authors summarize four open high level challenges, which future research
needs to tackle for boosting research undertakings in material science. In the following,
the individual high level challenges are briefly explained and it is described which of the
developed visual analysis tools contribute to the respective challenges.

• Integrated Visual Analysis Challenge: Standard visualization tools are not sufficient
to explore material science data in detail and to make the most out of all the
data available. Therefore, there is a need for integrated visual analysis tools with
linked views and interaction concepts that are tailored to a specific application area
and support users in their exploration using simple and meaningful visualization
techniques [HS17].
The visualization contributions in this thesis were developed in close collaboration
with material specialists and provide special interactive visualizations. With
FiberScout, fiber data can be analyzed in detail using linked 2D and 3D rendering
views. PorosityAnalyzer offers a tailored interactive system for the systematic
analysis of numerous pore segmentation pipelines with linked views on different
levels of detail. Dynamic Volume Lines enables a visual comparison of similar
volumes in an ensemble by abstracting the volumes as 1D line plots.

• Quantitative Data Visualization Challenge: Specific visual analysis tools for extract-
ing and analyzing derived data (e.g., calculated from features of spatial, temporal,
or higher dimensional data) have to be designed and implemented. Therefore,
feature extraction and clustering techniques are required to statistically evaluate
the data in order to visualize the properties of the individual features and feature
classes [HS17].
In this context, FiberScout calculates derived outputs such as fiber orientations
or fiber length distributions based on the preprocessed fiber data (e.g., start and
end points of all the individual fibers). The fibers can then be analyzed and
classified by their preprocessed and derived fiber characteristics using linked 2D
and 3D rendering views. Thus, fiber clusters with similar characteristics can be
identified. PorosityAnalyzer also calculates derived features from the different pore-
segmentation results. These can be analyzed and statistically evaluated according
to the sampled input parameters of the segmentation pipelines using overview
visualizations, detailed 2D slice views, and 3D rendering views. With Dynamic
Volume Lines, differences in an ensemble of volumes can be analyzed and compared.
The spatial data of the individual volumes are depicted as 1D line plots. A nonlinear
scaling based on intensity variations of the volumes, generates interactive 2D views
at different levels of detail. The nonlinear scaling has the effect that regions in the
2D views with low respectively high intensity variations among the volumes are
compressed (clustered) or expanded. In order to create a spatial context to the
volumes, the 2D views of the 1D line plots are linked to 3D rendering views. In
both views, interesting features in the volumes can be explored.
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• Visual Debugger Challenge: Similar to a code debugger, a visual debugger should
visually indicate errors and identify incorrectly used algorithms and parameters in
the analysis, which show only very limited benefits or lead to incorrect results. In
addition, such a tool should be able to give guidance to improve an analysis and
suggest appropriate algorithms or pipelines for specific tasks [HS17].
The overview visualizations of PorosityAnalyzer help to identify porosity segmen-
tation pipelines, which lead to incorrect or unsatisfying results compared to the
reference segmentation. At a more detailed level, a scatter plot matrix, 2D slice
views, and 3D rendering views are used to examine the results of the different
parameter settings of a pore segmentation pipeline. Hereby parameterizations can
be identified, which do not lead to correct pore segmentations in comparison to the
reference segmentation.

• Interactive Steering Challenge: In this context, visual analysis tools are used to
steer ongoing simulation or data acquisition systems. Such a visual analysis system
would monitor a costly process and should guide users on how to continuously
refine their results [HS17].
PorosityAnalyzer uses a scatter plot matrix to present the results of a segmentation
pipeline along with the corresponding input parameters. This matrix can be used
to check if the parameter space of a pore segmentation pipeline has been sampled
with sufficient accuracy or if the parameter settings need to be refined and new
segmentations need to be calculated.

It should be noted that the software modules of the individual visualization contributions
have been integrated into the open source software framework open_iA [FWS+19] in
order to provide a unified solution.
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CHAPTER 2
FiberScout: An Interactive Tool

for Exploring and Analyzing
Fiber-Reinforced Polymers

This chapter is based on the following publication:

J. Weissenböck, A. Amirkhanov, W. Li, A. Reh, A. Amirkhanov, E. Gröller, J. Kastner,
C. Heinzl, FiberScout: An Interactive Tool for Exploring and Analyzing Fiber Reinforced
Polymers, Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), pp.
153–160, Yokohama, Japan, 2014. doi: 10.1109/PacificVis.2014.52

Follow-up publications:

A. Bhattacharya, J. Weissenböck, R. Wenger, A. Amirkhanov, J. Kastner, C. Heinzl.
Interactive Exploration and Visualization using MetaTracts extracted from Carbon Fiber
Reinforced Composites. IEEE Transactions on Visualization and Computer Graphics,
Vol. 23, No. 8, pp. 1988–2002, 2017. doi: 10.1109/TVCG.2016.2582158

J. Weissenböck, A. Bhattacharya, B. Plank, C. Heinzl, J. Kastner. Visual classification
of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber
reinforced polymer specimens. Case Studies in Nondestructive Testing and Evaluation,
Vol. 6, Part B, pp. 39–46, 2016. doi: 10.1016/j.csndt.2016.05.006

J. Weissenböck, A. Reh, D. Salaberger, C. Heinzl, J. Kastner. Advanced Visualization
and Exploration Techniques for Fiber Reinforced Polymers. Proceedings of 11th European
Conference on Non-Destructive Testing (ECNDT), Prague, Czech Republic, 2014.
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2. FiberScout

Advanced composites such as fiber-reinforced polymers (FRPs) are promis-
ing candidate materials for future components as they allow integrating

the continuously rising demands of industry regarding cost-effectiveness,
function-orientation, and lightweightness. The most important structures of
fiber-reinforced polymers are the individual fibers, as their characteristics
(stiffness, strength, ductility, durability, etc.) to a large extent determine the
properties of the final component. The main contribution of this chapter
is the introduction of a new system for interactive exploration and visual
analysis of fiber properties in industrial 3D X-ray computed tomography
(XCT) data of fiber-reinforced polymers. The presented tool, FiberScout,
uses a parallel coordinates plot (PCP) to define and configure initial fiber
classes. Using a scatter plot matrix (SPLOM) linked to the PCP the initial
classification may be refined. This allows to analyze hidden relationships
between individual fiber properties. 2D and 3D views depict the resulting
fiber classifications. By using polar plots, an intuitive rendering of the fiber
orientation distribution (FOD) is provided. In addition, two approaches
of higher abstraction are proposed: The Blob visualization creates a hull
around fibers with similar characteristics. The Fiber Metadata visualization
allows the user to calculate overlays for 2D and 3D views, containing regional
information of particular material characteristics. The proposed system has
been evaluated by two groups of domain experts. By applying the presented
concepts, the user feedback shows that the domain experts are now able
to efficiently perform tasks like classification of fibers, visualization of fiber
lengths and orientations, and visualization of fiber regions. The insights
gained can be forwarded to the design office as well as to material development
and simulation, in order to speed up the development of novel composite
components.

2.1 Introduction

When analyzing an FRP specimen, the domain experts are interested in how the fibers
are distributed according to length and orientation. Depending on the given lengths and
how the fibers are aligned, experts can then estimate and verify the material properties.
They are looking for fiber layers with different fiber orientations resulting from the
manufacturing process. Furthermore, it is important for the experts to determine the
fiber characteristics of a spatial sub-region. These insights can be used for subsequent
simulations. In addition another question for material experts is, how the individual fiber
properties relate to each other and which regularities can be derived from them. Currently,
the domain experts are using specific software products, such as the VGSTUDIO MAX
by Volume Graphics [Gmb], more specifically the Fiber Composite Material Analysis
Module to examine FRP materials. With this module, local and global orientations as
well as concentrations of fibers can be displayed in a 3D view and a 2D slice view. It
is not possible to search for specific fiber properties within a specimen and there is no
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visual highlighting or classification of fibers. In addition, no dependencies between the
individual fiber characteristics can be investigated. The previously mentioned software
tool provides no visualizations on a higher abstraction level than on the 3D volume
data itself. Based on the domain-specific requirements, the following tasks for fiber
characterization and fiber visualization using XCT have been identified:

• Task 1: Classification of fibers. The most important task is to identify and
visualize classes of fibers in XCT scans of FRP specimens. The domain experts
need interactive visualization techniques to define and configure fiber classes in
accordance to their specific properties and to individually render each class.

• Task 2: Visualization of fiber lengths and orientations. Fiber lengths
and orientations contribute to a large extent to the characteristics of the final
components such as strength or stiffness. Therefore, the domain experts need
visualization techniques to render the fiber length and orientation distribution in
the dataset.

• Task 3: Visualization of fiber regions and fiber classes. The domain experts
require a quick and easy solution to identify and visualize regions with similar fiber
characteristics. A hull has to be determined, which is enclosing regions of fibers
with similar characteristics and differs significantly from other regions. The domain
experts need a method to analyze the manufacturing process in order to determine
modifications in the layer structure of the material. Furthermore, methods are
required to quickly explore the data and to identify relationships between individual
fiber characteristics.

In order to address the tasks identified by the domain experts, we introduce FiberScout,
a system to visualize and explore XCT scans of fiber-reinforced composites. The analysis
workflow starts with an XCT scan of the specimen and thus the generation of data. In a
preprocessing stage, a label image is calculated from the original grey value image. Starting
from the label image, the techniques designed in the following, their domain specific
integration, as well as the solutions of the Tasks 1–3 constitute the main contribution of
this work (see Figure 2.1):

• Parallel coordinates plot and scatter plot matrix to classify fibers. In
order to analyze the internal microstructure of the specimen, a PCP and a SPLOM
classify the fibers according to fiber characteristics. The SPLOM is used to refine
the classification results from the PCP in a successive step. Furthermore, the
SPLOM allows the user to reveal relationships between fiber characteristics.

• Polar plots to render fiber orientations. A fiber orientation distribution
(FOD) is computed on a half sphere and visualized using the azimuthal projection
of the northern hemisphere on a 2D plane. A spherical color map is integrated to
color code the orientations of fibers in 3D as specified by the domain expert.
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• Blob visualization and Fiber Metadata visualization to render fiber
classes. In order to address the problem of occlusion and clutter when rendering
datasets with high fiber content, a smooth hull (blob) is extracted and rendered. It
shows regions of fibers with similar characteristics or fiber bundles. Each identified
region is visualized as a blob. Furthermore, regional meta information of the fiber
data is computed for the Fiber Metadata visualization to quickly explore the data.

In the subsequent section (Section 2.2) we review the related work on fiber analysis
and fiber visualization. In Section 2.3 the datasets and the data preprocessing are
described. In Section 2.4, the visualization techniques to address Task 1–3 are introduced.
Section 2.5 presents the evaluation of the visualization results. Section 2.6 provides
implementation details. Finally, we conclude and point out potential future work in
Section 2.7.
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Figure 2.1: Overview of the interactive FiberScout visualization methods.
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2.2 Related Work

The related work of the proposed techniques is mainly found in the visualization and
analysis of material systems, the parameter-space exploration, as well as the visual data
exploration techniques.

2.2.1 Visualization and Analysis of Material Systems

Initial visualization techniques for non-destructive testing using XCT data have been
first introduced by Huang et al. [HMMW03]. A method for visualizing a precomputed
feature volume with a time series of domain parameters using 3D transfer functions was
presented by Hadwiger et al. [HLRS+08]. Based on this method, Fritz et al. [FHG+09]
introduced an approach to explore steel fiber-reinforced sprayed concrete and to quantify
fiber properties such as fiber orientation. They use a direction sphere histogram to
visualize the FOD. Furthermore, direction transfer functions in the orientation domain
are used to visualize fiber orientations with user-specified colors. The field of application
of Fritz’ work is, in comparison to our application area of FRPs, a completely different
one. We can calculate far more individual fiber characteristics of FRPs and we can
represent each characteristic in charts. Furthermore, we can search for fibers with a
highly specific set of fiber features and classify them. Besides these differences, we employ
several abstract representations to visualize fiber characteristics and the defined fiber
classes. Regarding orientation visualization, Robb et al. [RWS07] presented a method to
calculate the local orientation of a fiber using a Gaussian orientation space. Altendorf
and Jeulin [AJ09] compute the local directions in continuous space by analyzing the
mathematical morphology of images. A disadvantage of the local orientation analysis
is that a single fiber may have various orientations, as the calculation is performed
on a pixel or voxel-basis. This is not suitable for visualizing fibers as a whole object
in our visualization pipeline. The algorithm described by Salaberger et al. [SKK+11]
and Teßmann et al. [TMG+10] is used to extract individual fibers in our visualization
pipeline. Tests included in their work demonstrate that the method produces results with
accuracies of more than 95% correctly detected fibers (mainly depending on the fiber
content). Based on this implementation further algorithms are applied to the calculation
of fiber properties (e.g., fiber orientation, fiber length, fiber diameter, fiber volume).
Fiber orientations are then visualized in 3D space with a domain specific spherical color
map based on the work of Yamrom et al. [YSW94].

2.2.2 Parameter-space Exploration

The PCP [ID90] and SPLOM [WB97] are popular techniques for visualizing high-
dimensional datasets. For example, Craig et al. [CKC05] use coordinated parallel
views to query micro array time-course data. The queries done in the coordinated parallel
view are then linked to a scatter plot. They conclude that the coordinated parallel view
is more appropriate for revealing details in the data and supporting the discovery of less
dominant patterns. The S-shape axis layout for PCPs are used by Qu et al. [QCX+07]
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to highlight wind directions for analyzing the air pollution problem in Hong Kong. This
approach is suitable for revealing correlations between 1D directions and other variables.
However for analyzing 3D directions together with spatial information, conventional
PCPs are more convenient. Kuang et al. [KZZM12] did a comparison of scatter plots and
PCPs. They found that PCPs show advantages in low dimensionality and low density
datasets, while scatter plots outperform PCPs in higher dimensionality and higher density
datasets. A PCP and a SPLOM are integrated in our visualization pipeline. We combine
the two techniques using linking and brushing [Kei02], in order to explore the data in a
more interactive way. The advantages of these two techniques are exploited and hidden
correlations between individual characteristics are easier to detect.

2.2.3 Visual Exploration

Regarding clustering methods, Zhou et al. [ZCQ+09] introduced splatting of the individual
lines in PCPs to reveal strong correlations between the dimensions and to detect trends. In
addition, Zhao et al. [ZK10] proposed a novel method using PCPs for multi-dimensional
transfer function design. Guo et al. [GXY11] present an effective transfer function
design for multivariate volumes, providing tightly coupled views of PCPs. Li et al.
[LZQ13] showed a novel approach for space deformation to simulate a magnification
lens on versatile volume datasets and textured solid models. Tatu et al. [TMF+12]
employ interestingness-guided subspace search algorithms to detect a candidate set of
subspaces. The result of a k-means [KMN+02] algorithm turned out to generate robust
consequences for initial automatic classifications. Therefore, in our proposed work we
follow this approach for the determination of fiber classes with similar characteristics.
Jackson et al. [JLS+13] present a tangible interface, which allows the user a 3D interactive
exploration of thin fiber structures to understand patterns in fiber orientation inside a
volume.

2.3 Dataset Description and Preprocessing
This section describes the investigated datasets (see Section 2.3.1) and how the prepro-
cessing stage extracts fibers and calculates fiber characteristics (see Section 2.3.2).

2.3.1 Dataset Description

The two glass fiber-reinforced polymer (GFRP) specimens to test the fiber-visualization
pipeline are 614× 961× 600 and 608× 1411× 500 voxels in size with a resolution of 2 µm
and 3 µm respectively. We will subsequently call them Dataset 1 (see Figure 2.2 A) and
Dataset 2 (see Figure 2.2 B). The carbon fiber-reinforced polymer (CFRP) specimen
we investigated in this work has a size of 600 × 500 × 600 voxels and is scanned with
a resolution of 1 µm. We will subsequently call it Dataset 3 (see Figure 2.2 C). All
specimens are scanned with a GE phoenix|X-Ray Nanotom 180 NF XCT device.
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A

B

C

Figure 2.2: (A) Dataset 1 : GFRP specimen with 15916 fibers. (B) Dataset 2 : GFRP
specimen with 21751 fibers. (C) Dataset 3 : CFRP specimen with 22656 fibers.
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2.3.2 Preprocessing

In the preprocessing stage, the fiber characterization pipeline according to Salaberger et
al. [SKK+11] is applied to the scanned XCT volume data of the fiber-reinforced polymer
(FRP) specimens. In the first step of this pipeline, Gaussian blurring is applied to reduce
noise in the original volume data. In the second step the gradient magnitude is computed,
which is used as input for the computation of the Hessian matrix at each voxel. Using
the Hessian matrix, the gray value differences of a voxel compared to its neighboring
voxels are detected, which permits a statement about the main orientation of the fibers.
The Hessian matrix also determines the medial axis of the individual fibers as originally
proposed by Teßmann et al. [TMG+10]. The intermediate results of the pipeline are
the extracted individual fibers of the dataset given by their corresponding start and end
points. The characteristics of the extracted fibers are computed at the same time as the
individual fibers are extracted. Finally, a labeling filter is applied to all the extracted
fibers. In the labeled image every voxel of an individual fiber is mapped to a unique label
identification. In total, twenty-five fiber characteristics for each fiber are available. The
most significant fiber characteristics for further analysis are shown in Table 2.1.

Characteristic Description Unit
a11, a22, a33 The main diagonal elements of a fiber orientation

tensor [SSK11]
-

ϕ, θ Spherical coordinates of a fiber orientation °

xi, yi, zi Cartesian coordinates of the ith fiber center point,
0 ≤ i ≤ m− 1

µm

sL Straight length of a fiber µm

diameter Diameter of a fiber µm

volume Volume of a fiber µm3

Table 2.1: The most significant fiber characteristics in the work of FiberScout.

2.4 Visualization

For understanding the micro structures of FRPs, visualization techniques such as direct
volume rendering of the extracted fibers do not satisfy the requirements of the domain
specialists. This is due to clutter and occlusion. To overcome this problem, the FiberScout
research prototype (see Figure 2.3) with its visual fiber exploration techniques (see
Section 2.4.1) has been developed, enabling interactive data exploration, clustering, and
classification. A PCP (see Section 2.4.1.1) is linked to a SPLOM (see Section 2.4.1.2), the
Fiber Class Explorer (see Section 2.4.1.3), as well as to 2D and 3D views. Furthermore,
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visualization techniques have been developed to give insight into the clustered fiber data
at a higher level of abstraction. These widgets and techniques include the FOD (see
Section 2.4.2), the fiber length distribution (see Section 2.4.3), the Blob visualization
(see Section 2.4.4), and the Fiber Metadata visualization (see Section 2.4.5).

2.4.1 Visual Fiber Exploration

Right after loading the dataset into the visualization pipeline, an overview of the data is
presented in a PCP, in a SPLOM, as well as in a 3D rendering view (see Figure 2.3 A).
Following the visual information-seeking mantra described by Shneiderman [Shn96], the
data is divided into subclasses (zoom and filter), which are displayed in turn with the
PCP and the SPLOM. The clutter and occlusion problem of the visualization may be
considerably reduced applying additional user-specified queries to the data (details on
demand). Furthermore, the views of the PCP and the SPLOM are linked with each other.
Changes done in the parameter space will immediately be applied to the data (3D view
and 2D slice views) so that the user is able to get a real-time feedback when querying
the data. This concept supports interactivity and makes the visual exploration process
clear and simple.

2.4.1.1 Parallel Coordinates Plot (PCP) for Fibers

The PCP [ID90] is a powerful visualization technique using high-dimensional geometry
for the analysis of multivariate data. Unlike in the Cartesian coordinate system, the axes
are set up in parallel and equidistant to each other. A point in the n-dimensional space
is represented by a polyline crossing the n parallel axes. The position of the intersection
on the jth axis corresponds to the value of the jth coordinate of the point. In the end,
each multi-dimensional point is represented by a polyline through the parallel axes.

In the proposed approach, a PCP is used to initially classify fibers according to their
individual characteristics (see Table 2.1). The number of fibers in a specimen ranges
from several hundreds to hundreds of thousands and more. This results in cluttering and
occlusion (see Figure 2.2). As too many lines are drawn between the parallel axes, the
exploration process becomes very inefficient. Following the nested model for visualization
design and validation [Mun09], we examined our implementation and explored axis order
selection for PCPs [QCX+07]. If axes representing fiber characteristics with hidden
correlations are placed near to each other, the relationships between these characteristics
are likely to become apparent. We then found that we will lose other potential correlations
between the rest of the characteristics. Furthermore, it is a very time-consuming procedure
and requires practical experience to understand the whole reorder and cluster process.
After studying the coordinated parallel views for exploratory analysis of micro array
time-course data [CKC05], we took an approach that links a SPLOM to enhance and
refine the classification results of the PCP. Figure 2.3 D depicts the PCP with selected
fiber characteristics color-coded in red.
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2.4.1.2 Scatter Plot Matrix (SPLOM) for Fibers

In addition to the PCP, a SPLOM [WB97] is used to visualize and reveal relationships
such as dependencies, patterns, and even outliers among all fiber characteristics (see
Figure 2.3 B). Furthermore, the SPLOM serves as a refinement tool for the selection
obtained using the PCP. The SPLOM used in our visualization pipeline consists of
n(n− 1)/2 scatter plots organized in a matrix. n represents the number of fiber char-
acteristics used in the SPLOM. To avoid redundancy, only the region below the main
diagonal of the SPLOM is filled. A histogram of each fiber characteristic is shown in
the main diagonal. Below this main diagonal, a scatter plot is drawn for each pair of
the characteristics. In the upper right corner an enlarged view of the selected scatter
plot is displayed. In the enlarged view and in the small charts as well, selections are
performed by drawing rectangles, which will mark the selected data in red (brushing).
These selections will be applied to all other scatter plots, the PCP, as well as the 3D
rendering view (linking). In order to suggest initial classes of fibers, a k-means algorithm
[KMN+02] is used. The fiber characteristics depicted in the enlarged view are taken as
input data for the automatic clustering. The number of classes is specified by the user.
Results of the classification can then be transferred to the Fiber Class Explorer or further
refined in the PCP and in the SPLOM.

2.4.1.3 Fiber Class Explorer

The Fiber Class Explorer lists all created classes of fibers and allows the user to add,
modify, and remove classes of interest. For each class, the user may assign individual
names and colors. In addition, for each class, statistical information such as number of
fibers (Count), the percentage of the fiber count (Percent), and the minimal, maximal, and
average values of all fiber characteristics within a class are calculated (see Figure 2.3 C).
By clicking on a class of interest, its elements are revealed and the individual properties
of each fiber may be explored. It is also possible to check the 25 fiber characteristics
individually. The checked features will be highlighted in the SPLOM, PCP, and in the
2D and 3D views immediately. Figure 2.3 C shows a manual classification of the GFRP
dataset with respect to fiber orientation and the spatial position in y-direction of the
fiber center point. Three classes are defined, the rest of the fibers are left as Unclassified.
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2. FiberScout

2.4.2 Fiber Orientation Distribution (FOD)

To visualize the fiber orientations, spherical coordinates are used. Figure 2.4 A shows
the construction of the fiber orientations from Cartesian coordinates. Here, θ represents
the polar angle measured from the zenith z-direction. The azimuth angle ϕ lies in the
xy-plane and is measured from the x-direction. Because of symmetry it is possible to
depict all fiber orientations on a half sphere by specifying θ ∈ [0, π/2] and ϕ ∈ [0, 2π).
We discretize the northern half sphere with a user defined resolution and compute the
frequency of each discretized direction. This builds up the FOD. The azimuthal projection
is later used to generate a 2D image of the FOD. The Figures 2.4 A and 2.3 E depict
the global FOD of Dataset 1, Figure 2.4 B shows the global FOD of Dataset 3. The
annotations around the outer circle represent the azimuthal angle and the annotations
inside represent the polar angle. The color bar ranges from gray to yellow where gray
encodes low frequencies and yellow encodes high frequencies. Gray is used to depict the
orientations where no fibers are headed. In addition to the global FOD, we enable the
computation of the orientation distribution for each manually defined class. The main
orientations in both Figures 2.4 A and B are easily visible as yellow spots. In case of
Dataset 1 (see Figure 2.2 A), a strong prevalence along the x-axis is present (see Figures
2.3 E and 2.4 A). This indicates that most fibers are aligned along the x-axis at an angle
of approximately 10–50 degrees to the z-axis. In the case of Dataset 3 (see Figure 2.2 C),
the preferred direction of the fibers is along the y-axis at a angle of nearly 90 degrees to
the z-axis (yellow spot in Figure 2.4 B).
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Figure 2.4: Fiber orientation distribution in the polar plot. (A) Construction of the
fiber orientations from Cartesian coordinates (Dataset 1 ). (B) Global FOD of Dataset 3.

The visualization of the FOD, which defines the mechanical loading capacity, is of great
interest to the domain experts. Therefore, we applied a spherical color map where the
colors are mapped to the spatial fiber orientations. In order to highlight the x, y and
z-directions of a dataset, we mapped these directions to red, green, and blue respectively.
Figure 2.5 A depicts a direct volume rendering of fibers by color coding the orientations
with the spherical color map (see Figure 2.5 B). This visualization allows the user an
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easy identification of the fiber orientations by their color.

z

y

x

A

B

Figure 2.5: (A) Direct volume rendering of the individual fibers of Dataset 2 using
(B) a spherical color map to encode the fiber orientations.

2.4.3 Fiber Length Distribution (FLD)

In addition to fiber orientation visualization, an automatic algorithm is applied to classify
and visualize the fibers according to their length. The calculation of the FLD is very
important for the experts to quickly represent the layout of short and long fibers in the
volume. Thus, conclusions about the loading capacity of the material can be drawn.
Figure 2.6 A shows a 3D rendering of a FLD of Dataset 2 and Figure 2.6 B depicts the
corresponding histogram of the fiber lengths.
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Figure 2.6: Visualization of the different fiber lengths of Dataset 2. (A) 3D rendering
view of the color-coded FLD and (B) the corresponding histogram of the fiber lengths.

2.4.4 Blob Visualization

For the domain experts, it is important to gain a quick overview of the shape of each
fiber class and the layer structure in order to analyze the material build-up of the final
component. Due to the issues of overlap and occlusion, the separation of the different
fiber classes is frequently problematic using techniques like direct volume rendering.
This task is becoming challenging especially for datasets with a very high fiber density
that contain thousands of fibers. Based on the defined fiber classes in the Fiber Class
Explorer, we introduce a Blob visualization (see Figure 2.7) by applying methods of
implicit modeling as proposed by Bloomenthal et al. [BW90].

A blob in our application case is defined as a closed contour surface surrounding all fibers
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2.4. Visualization

of a class. It provides the domain experts with an enclosure of the class and shows the
spatial location and shape of the class within the data. To construct the blob surface,
we apply a distance-field based approach, which is remotely similar to the Metaballs
method proposed by Blinn et al. [Bli82]. For every fiber of the class, we specify a line
segment so that the start and the end points of a line segment correspond to the start
and the end points of a fiber. This provides an approximation for straight and slightly
curved fibers. Taking all line segments we can define the shape of a blob by the following
distance function defined in 3D space: min

i=1..m
di ≤ threshold, where m is the number of

line segments, di is the Euclidean distance to the given line segment and threshold is a
parameter defining the blob size. To obtain a mesh of the blob surface, we uniformly
sample the distance function on a grid and then apply the marching cubes algorithm by
Lorensen and Cline [LC87] with a corresponding threshold value. In some cases, blobs
determined from different fiber classes may overlap, which results in unclear or cluttered
representations. To solve this issue we have modified the algorithm in a way that it
removes overlapping by adjusting the blob shapes (see Figure 2.7 A and B). We resolve
conflicts for those points belonging to more then one blob using the following approach:
the point belongs to the blob with the closest fiber. For all the other blobs we set the
distance function to infinity so that they do not include the point. This way the point will
belong to the blob with the closest fiber and the areas where blobs overlap will become
separated based on the corresponding Voronoi diagrams. We further allow the user to

A B

Figure 2.7: Blob visualization of Dataset 1. (A) Direct volume rendering of user-defined
blue and orange fiber classes with semi-transparent blobs. (B) Direct volume rendering
of the dataset with unclassified fibers in gray.
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define the minimal separating distance for any pair of blobs. If the minimal separating
distance is introduced, the point in an overlapping area is not assigned to any of the
blobs if the difference between their distance functions in this point is smaller than the
separation distance. Each blob in the 3D view is marked with a label containing the
name of the class and a few class statistics: the number of fibers in the class and the
percentage of the total fiber count. In order to enhance the shape perception of the blob,
the user can enable a silhouette rendering mode. This mode shows the outline of the
blob and highlights its sharp edges using black lines.

2.4.5 Fiber Metadata Visualization

As described in Task 3, domain users need a method to explore the data in order to find
regions of interest (ROI). Due to the high information content, visualizations based on the
original volume data are often not efficient. In order to provide a higher level overview of
the fiber characteristics’ distribution in the data, we use the Fiber Metadata visualization
approach. We subsample the original volume data with a user-specified scaling-factor,
which results in a “meta volume”, i.e., a volume made up of larger cells, typically 5 to
20 voxels each. We then calculate local characteristic values based on the fibers, which
at least partially lie in each cell of the “meta volume”. The average value of each fiber
characteristic is calculated from all fibers of a cell. The individual fiber characteristics are
used as input data for calculating the meta volume. We visualize the “meta volume” as a
context for the original volume data in the 3D view (see Figure 2.8 A) using multi-channel
volume rendering as well as overlaying in the 2D slice views. Figure 2.8 B on the left,
shows a “meta volume” color-coded according to the fiber orientation angle θ. An opacity
indicator takes care of the overall adjustment regarding the opacity between the overlaid
“meta volume” and the original volume data in the 2D slice views. Figure 2.8 B on the
right, shows the 2D slice view of the meta volume overlaid on the original volume data.
The Fiber Metadata visualization allows the user to pick a fiber characteristic of interest
and to visualize the characteristic’s distribution as a context. It enables a better visual
exploration of the data by facilitating the identification of regions with similar or different
fiber characteristics.
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A

B

Figure 2.8: Fiber Metadata visualization of Dataset 3. (A) Left: Direct volume rendering
of the original CFRP dataset. Right: 2D slice view with vertical fibers and pores (black
areas) in the upper half and horizontal fibers in the lower half of the dataset. (B) Left:
Direct volume rendering of the “meta volume” overlaid on the original CFRP data. Right:
2D slice view of the semi-transparent “meta volume” overlaid on the original data with a
linear blending.
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2.5 Results and Evaluation

The generated results are demonstrated on different types of FRPs, i.e., one carbon fiber-
reinforced polymer and two glass fiber-reinforced polymer specimens (see Section 2.5.1).
A questionnaire to evaluate all presented methods was prepared and filled out by domain
experts. The results outline the usability of the presented methods from the perspective
of domain experts (see Section 2.5.2).

2.5.1 Visualization Results

• Original Volume Data: As shown in Figure 2.1 (input data), fiber classes or fiber
orientations of Dataset 1 are difficult to identify.

• Visual Fiber Exploration Method: After the visual exploration process, the
user is able to apply a multi-class rendering process to the manually defined classes.
All fibers are colored according to their specific fiber-class color in the PCP, the
SPLOM, and the 3D rendering view. Figure 2.3 depicts the manually defined classes
for Dataset 1 . All the classes can be clearly identified.

• Orientation Identification: Figure 2.5 A depicts the 3D view of the extracted
fibers (Dataset 2 ) color-coded according to the spherical color map (Figure 2.5 B).
The fiber orientations can be clearly identified. The color coding is applied to the 3D
view and the 2D slice view.

• Fiber Length Distribution: An automatic algorithm is applied to classify and
visualize the fibers according to their length. Figure 2.6 shows the color-coding of the
extracted fibers (Dataset 2 ) with respect to their length.

• Blob Visualization: To provide the domain experts with an enclosure of all their
defined classes, we applied the concept of Blob visualization. This allows the domain
experts to gain a quick overview of the specimens layer structure and the shape of the
fiber classes. Figure 2.7 illustrates the Blob visualization based on Dataset 1.

• Fiber Metadata Visualization: A 3D view of the “meta volume” (Dataset 3 ) color
coded according to the fiber characteristic θ is shown in Figure 2.8 B on the left.
Blue represents a θ value between 0° and 10° and indicates that the fiber orientation
is aligned along the z-axis. Orange represents a θ value between 80° and 90° and
denotes fibers which are aligned orthogonally to the z-direction. The 2D slice view
(see Figure 2.8 B on the right) with reduced opacity information clearly indicates the
layer structure of the specimen.

2.5.2 Evaluation and User Feedback

The necessity of individual and interactive fiber-visualizations originates from require-
ments of non-destructive testing (NDT). During the FiberScout development over a
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period of more than 18 months, improvements of the fiber-visualization pipeline were
contentiously done together with the NDT practitioners.

In order to get feedback on the FiberScout system, we designed an evaluation questionnaire
with regard to the tasks defined by the domain experts (see Section 2.1). The questionnaire
is structured so that information on the experiences of the participants with industrial
3D X-ray computed tomography are collected first. Then it is determined how suitable
the PCP and the SPLOM are for classifying the fibers. In addition, the usefulness of the
statistical information of the Fiber Class Explorer is queried. After that we tried to find
out how the FOD is applicable for displaying fiber orientations. It is then checked if the
fiber classes can be well distinguished by the Blob visualization. Finally, it is determined
how well Fiber Metadata visualization suffices to indicate general fiber orientations. To
evaluate the system, we choose four NDT practitioners who are familiar with X-ray
computed tomography and its visual representations and four material scientists who are
experienced in analyzing fiber-reinforced polymers. The averaged and weighted results of
the evaluation questionnaire are depicted in Figure 2.9. The red lines represent the results
of the material scientists, while the blue ones display the results of the NDT practitioners.
We use a Likert scale ranging from one to five to represent the user experience, varying
from poor to excellent.

The fiber-visualization pipeline on the whole received good feedback from the domain
experts. The SPLOM was considered as well suited for clustering fiber characteristics.
By linking the SPLOM and PCP, the relationships between the fiber characteristics can
be easily revealed. Outliers in the SPLOM are obvious to be detected. In addition,
the participants pointed out that further material characteristics such as porosity are
easily observable. The orientation visualization is simple and self-explanatory. The
main fiber orientation can be easily determined using the polar plot for the FOD. Both
the NDT practitioners and the material scientists reckon that it is difficult to generate
useful information of fiber characteristics using the original volume data. Blob and Fiber
Metadata visualization also provide valuable results for separating fiber classes.
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Figure 2.9: The averaged and weighted results of the FiberScout evaluation questionnaire
with a five-point Likert scale ranging from one to five respectively, i.e., from poor to
excellent.
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2.6 Implementation
FiberScout was implemented in C++. The experiments were performed on a desktop
machine with an Intel(R) Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce
GTX 1080 GPU with 8 GB RAM. ITK 4.9 [JMIC15] was used to perform basic image
processing and to load the datasets. The 3D rendering views and the 2D slice views
were calculated with VTK 7.0 [SML06]. The GUI was implemented in Qt 5.8 [Gro]. The
research prototype is available in the open source framework open_iA [FWS+19].

2.7 Summary and Conclusion
In this chapter we present FiberScout, a system for the visual analysis of fiber character-
istics in fiber-reinforced polymers. The user feedback shows overall good results from
domain experts, especially concerning clustering with the help of a SPLOM with brushing
and linking and the visualization of the FOD. The Fiber Metadata visualization allows the
user to quickly explore the data and find regions of interest. The Blob visualization is an
appreciated technique to represent regions with the same characteristics in a volume. One
shortcoming of the current implementation is that the analysis is limited to approximately
100.000 fibers. In case of one million fibers, the calculation times would last much longer.
This fact could be counteracted by parallelizing appropriate code sections. Another
problem relates to the PCP and the SPLOM, which are cluttered if too many fiber
features are selected. For future work, the calculation of additional statistics and the
selection of individual fibers in the 3D view could be interesting. The experts indicated
that combining the porosity information and the fiber characteristics of a specimen would
be important for them as well.
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CHAPTER 3
PorosityAnalyzer: Visual

Analysis and Evaluation of
Segmentation Pipelines to
Determine the Porosity in
Fiber-Reinforced Polymers

This chapter is based on the following publication:

J. Weissenböck, A. Amirkhanov, E. Gröller, J. Kastner, C. Heinzl. PorosityAnalyzer:
Visual Analysis and Evaluation of Segmentation Pipelines to Determine the Porosity in
Fiber-Reinforced Polymers. Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 101–110, Baltimore, United States of America,
2016. doi: 10.1109/VAST.2016.7883516

Follow-up publications:

M. Schiwarth, J. Weissenböck, B. Plank, B. Fröhler, C. Heinzl, J. Kastner. Visual Analysis
of Void and Reinforcement Characteristics in X-Ray Computed Tomography Dataset Se-
ries of Fiber-Reinforced Polymers. Proceedings of 13th International Conference on Textile
Composites (TexComp-13), Milan, Italy, 2018. doi:10.1088/1757-899X/406/1/012014

J. Weissenböck, S. Senck, B. Plank, C. Heinzl, J. Kastner. Porosity Evaluation of Carbon
Fiber-Reinforced Polymers with Porosity Analyzer. Proceedings of the 3rd International
Conference on Tomography of Materials and Structures, Lund, Sweden, 2017.
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In this chapter we present PorosityAnalyzer, a research prototype for detailed
evaluation and visual analysis of pore-segmentation pipelines to determine

the porosity in fiber-reinforced polymers (FRPs). The presented tool consists
of two modules: the computation module and the analysis module. The
computation module enables a convenient setup and execution of distributed
offline computations on industrial 3D X-ray computed tomography (XCT)
datasets. It allows the user to assemble individual segmentation pipelines
in the form of single pipeline steps, and to specify the parameter ranges as
well as the sampling of the parameter space of each pipeline segment. The
analyzed data consists of the calculated 3D binary-segmentation mask, the
resulting porosity value, and other derived results (e.g., segmentation-pipeline
runtime) along with the input parameters. The analysis module presents the
data at different levels of detail by drill-down filtering in order to determine
accurate and robust segmentation pipelines. Overview visualizations allow
the user to initially compare and evaluate the segmentation pipelines. With
a scatter plot matrix (SPLOM), the segmentation pipelines are examined
in more detail based on their input and output parameters. Individual
segmentation-pipeline runs are selected in the SPLOM and visually examined
and compared in 2D slice views and 3D rendering views by using aggregated
segmentation masks and statistical contour renderings. PorosityAnalyzer
has been thoroughly evaluated with the help of twelve domain experts. Two
case studies demonstrate the applicability of our proposed concepts and
visualization techniques, and show that our tool helps domain experts to gain
new insights (e.g., that one segmentation algorithm does not work reliably
at certain porosity values while another works across the whole range) and
improve their workflow efficiency.

3.1 Introduction

In material testing and quality control the porosity value is often used for deciding
whether an expensive component passes a quality-control check or whether it is rejected.
The porosity value is defined as the ratio in percent of the total cumulative volume of all
pores in the specimen to the specimen’s volume. There exist various destructive and non-
destructive testing (NDT) methods for the porosity determination in FRPs. Destructive
testing methods include wet-chemical analysis using acid digestion and materialography in
combination with microscopic analysis [BS04]. NDT methods, for example, are ultrasonic
testing and active thermography [MPSH11]. However, these methods are often not as
accurate as desired in critical areas of the specimen. In contrast, modern XCT scanning
devices are capable of delivering high-resolution results down to a few microns. When
XCT is used for a precise porosity determination, the scan parameters, the reconstruction
methods, the image processing, and especially the segmentation algorithms play a decisive
role. The porosity determination of FRPs by means of XCT is difficult, since typical
industrial components are composed of various materials. The wide variety of material
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combinations causes differences in image quality regarding noise, sharpness, and artifacts.
Therefore, the XCT experts are required to adjust the parameters of their segmentation
methods for every material type.
To determine the porosity of an XCT-scanned FRP specimen, the domain experts are
mainly using global-threshold segmentation algorithms to extract the pores from the rest
of the specimen (fibers and matrix) [SKO+11]. The advantage of global-thresholding
segmentation methods is the high processing speed and the small number of parameters
to tune. A representative of this family is the Otsu segmentation algorithm [Ots79]. This
histogram-based segmentation method has no parameters. Usually XCT datasets are
suffering from noise, artifacts (e.g., beam hardening), and low resolution. Therefore,
global-thresholding segmentation methods might produce a significant number of misclas-
sified voxels, which leads to an incorrect porosity value of the specimen. This problem can
be solved by using smoothing filters to reduce the noise and more advanced segmentation
methods. These algorithms typically require additional parameters to specify. Tuning
these input parameters to find an appropriate parameter preset is essential.
Typically, domain experts start this task by empirically setting initial parameters to the
best of their knowledge and experience. The result is then visually compared side-by-side
to a reference segmentation, which comes from the same dataset. Depending on the
result, the parameters are adapted. This iterative process is terminated as soon as the
domain experts considers the correspondence between result and reference as sufficient.
In addition, the comparison of the results is further hampered by the different outcomes,
which originate from different reference methods. During the iterative procedure of
porosity determination, it is important to record the parameter combinations and the
corresponding results to evaluate and compare them later. This trial-and-error approach
is not only time-consuming, tiring, and often frustrating, but also generates modest
results in many cases.
Taking all the factors mentioned above into account, it follows that there is a high demand
for methods to set up segmentation pipelines, to perform all necessary computations in
batches, to manage and organize the resulting data, and to support the visual analysis
of the data. With such tools available, domain experts can be much more efficient in
making a well-justified selection of the segmentation pipeline for XCT-scanned FRP
specimens. Moreover, it enables the domain experts to base their decision-making on a
detailed analysis of various aspects of pore-segmentation pipelines and domain-specific
requirements. Based on the demands of the experts, we identified the following tasks:

• Task 1: Set up a segmentation pipeline where the parameter ranges of all filters
are adjustable and run the segmentation pipelines in a batch process.

• Task 2: Analyze and evaluate the pipelines and compare them with each other.

• Task 3: Explore segmentation-pipeline parameter trade-offs concerning accuracy,
performance, and stability.

• Task 4: Generate accurate, robust, and reproducible results using a specific
segmentation-pipeline preset for a class of datasets.
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In order to fulfill these domain-specific demands we present PorosityAnalyzer, an in-
teractive research prototype to visually analyze and explore segmentation pipelines for
porosity determination in FRPs. The workflow of the PorosityAnalyzer is shown in
Figure 3.1. The input data are: a list of XCT-scanned FRP datasets and a list of
reference segmentations for these datasets. The datasets are described in Section 3.3.

The tool is divided into two modules: the computation module and the analysis mod-
ule. The computation module allows users to set up and execute distributed offline
computations of porosity segmentation pipelines (see Section 3.4). In the computation
setup-phase, the parameter spaces of the segmentation algorithms for the chosen datasets
are sampled and the resulting settings are stored. The computations are then performed,
resulting in sets of segmentation-pipeline runs. For each run the segmentation mask,
porosity value, runtime, and Dice-coefficients describing the similarity between a segmen-
tation mask and a reference-segmentation mask [Dic45] are calculated and stored. These
computation results are used as input for the analysis module (see Section 3.5), which
provides methods for visualization, exploration, and visual analysis of the segmentation
pipelines. The analysis module consists of four levels: prefiltering, overview, analysis, and
visual examination. During a drill-down approach, the user performs a visual analysis and
an examination of the data on each level by selecting the most interesting data portion
and passing it on to the next level. This allows the user a thorough visual analysis from
the data overview to the most detailed representations.

The main contributions of this part of the work are in the visual knowledge discovery, in
the interactive visualization techniques on multiple levels-of-detail, and in the fulfillment
of the domain-specific requirements for the analysis of pore segmentation-pipelines
concerning XCT-scanned FRP specimens.
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Figure 3.1: Overview of the PorosityAnalyzer workflow (light gray boxes: input and
intermediate data, dark-gray boxes: stages of the workflow).
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3.2 Related Work

The related work of PorosityAnalyzer lies in the areas of 3D image segmentation, visualiza-
tion of multi-dimensional data, and visual parameter-space analysis. A broad survey of 3D
image segmentation methods is presented by Wirjadi [Wir07]. Gleicher et al. [GAW+11]
provide a detailed survey on methods for information visualization and visual comparison.
Scatter plots are often used as a visualization method for statistical, non-spatial, and
multi-dimensional data [CM88]. A SPLOM organizes all possible combinations of 2D
scatter plots in one layout for providing an overview on multidimensional data, studying
the correlations between data dimensions, and locating clusters of data points. Elmqvist
et al. [EDF08] introduced novel SPLOM navigation techniques using transitions for an
intuitive multidimensional visual data exploration. Mindek et al. [MMGB17] present a
model for providing a data sensitive navigation for user interface elements. The model
normalizes the user input according to the visual changes. This makes the changes in the
input parameters more predictable with respect to the perceived changes in the output
image and helps the user to anticipate the expected effects of the interaction. Gavrilescu
et al. [GMG10] extended interface elements, such as sliders or transfer function editors,
with plots showing the magnitude of change in a rendered image. This provides visual
cues on the resulting effects that would occur if a certain parameter is changed. We
utilized a similar approach with parameter-range sliders (see Section 3.5.3).

The related research in the area of porosity analysis and pore visualization in FRPs is
given in the approaches by Reh et al. Porosity Maps [RPK+12] provide an overview
of pore locations and density. The Mean Objects (MObjects) [RGK+13] visualization
aggregates all the pores in the specimen in order to cluster pores by shape and size,
and provides a global overview of pore shapes in the data. Ushizima et al. [UMW+12]
proposed geometric and topological descriptors to enhance the estimation of material
permeability in complex porous micro structures. Their analysis framework combines
image processing, multi-scale topological analysis, and the visualization of pore bodies.

Visual parameter-space analysis has a great potential to support the validation and the
use of simulation models. Sedlmair et al. [SHB+14] developed an abstract conceptual
framework for visual parameter-space analysis problems to guide and systematize research
endeavors in this area. The authors’ framework covers a broad range of tools and design
studies from different application fields. Their classification is based on three major
components: a data-flow model abstractly describing analysis problems independent of
the application domain, a set of four navigation strategies supporting the parameter-space
analysis with visualization methods, and a characterization of six analysis tasks. Our work
fits into this framework and fulfills the following classification criteria: it is a data-flow
model with an integrated sampling step, utilizing derived measures. The navigation
strategy is global-to-local. The application area is engineering and the analysis tasks are
optimization, partitioning, and sensitivity investigation.

Another related work in the field of visual parameter-space analysis was done by
Piringer et al. [PBK10], who use multiple 2D and 3D projections of an n-dimensional
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space for regression-model simulations in car engine design. Their approach compares
known and predicted results, as well as results of multiple models, analyzes regions with
a bad fit, and assesses the physical plausibility of models. Berger et al. [BPFG11] extend
this work for uncertainty-aware exploration of continuous parameter spaces. They guide
the user to potentially interesting parameter regions and visualize the model predictions’
uncertainty in 2D scatter plots and parallel coordinates plots. Coffey et al. [CLEK13]
utilize a local-to-global approach for exploring large design spaces in simulation-based
engineering, the design of visual effects, and other tasks that require tuning parameters of
computationally intensive simulations. Pretorius et al. developed Paramorama [PBCR11],
a plug-in for the CellProfiler biomedical image-analysis framework that regularly samples
continuous parameters of an image processing pipeline. Their visual analysis tool is used
to study relationships between the input parameter-space and image-based outcomes.
Results are hierarchically clustered based on the parameter values and can be queried
and laid-out side-by-side for a visual comparison. Bergner et al. [BSM+13] introduced
ParaGlide, a visualization system for a systematic interactive exploration of parameter
spaces of multi-dimensional simulation models.

The Tuner system by Torsney-Weir et al. [TWSM+11] is somewhat similar to Porosity
Analyzer and also addresses the problem of parameter finding in image segmentation
algorithms and finding optimal algorithm presets. The parameter space of the evaluated
algorithm is parsed, and off-line computations are performed. Dice-coefficients are
utilized to evaluate the quality of the segmentation results compared to the ground-truth
segmentations. Finally, a Pareto panel and HyperSlice [vWvL93] views are used for the
visual analysis and navigation. In comparison to Tuner, there is a list of important
differences that sets our work apart. First, the potential users of Tuner are segmentation-
algorithm developers, i.e., people who are familiar with all the implementation details and
inner workings of segmentation algorithms. PorosityAnalyzer’s main users are domain
experts, i.e., segmentation-algorithm consumers, who are required to solve specific tasks
involving segmentation algorithms. Second, the goal of Tuner is to find optimal parameter
settings for one segmentation algorithm. The main goal of PorosityAnalyzer is to evaluate
and compare many different segmentation pipelines in order to find the optimal pipeline
and preset. Third, optimizations in Tuner are based on a ground-truth segmentation
mask. We are mainly interested in evaluating segmentation pipelines based on porosity
as an domain specific criterion. In addition, we consider the reference-segmentation
mask and runtime of the algorithm. The reference-segmentation mask is considered as
ground truth. Fourth, Tuner is designed to work with one algorithm and one dataset at a
time with the possibility to switch datasets sequentially. One important design principle
of PorosityAnalyzer is to provide offline computations and visual analysis for multiple
segmentation pipelines and multiple datasets at once. Fifth, there is a clear distinction
in how the sensitivity analysis is performed. Tuner is using uncertainty/gain values
provided by a Gaussian process model. Interactive sensitivity analysis is performed in
the following way: as the user changes a particular parameter value all plots dependent
on it change interactively, which reflects the algorithm’s sensitivity to this parameter.
PorosityAnalyzer mainly uses boxplots, histograms, statistical contours for porosity
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segmentations, and parameter-range sliders (PRSs) to evaluate a segmentation-pipeline’s
sensitivity and robustness. Finally, in the investigation phase we are utilizing a SPLOM
in the analysis module, while Tuner is relying on the HyperSlice visualization.

3.3 Dataset Description
Our domain experts mainly deal with fiber-reinforced polymers (FRPs). In this work we
use seven carbon fiber-reinforced polymer (CFRP) specimens, which were measured with
a GE phoenix|X-Ray Nanotom 180 NF XCT device. Due to the different methods for
reference porosity determination, we categorized the datasets into two classes. In the
subsequent sections, we will refer to these classes as: aeronautic industry and wet-chemical
analysis scans. The specimens are named accordingly: Ex_ and WChem_low. In addition,
we investigated the PorePhantom dataset, where the pores were artificially included by
the domain experts using an in-house built XCT simulation software called SimCT, which
has been developed by Reiter et. al. [RMH+09]. The simulation parameters for the
virtual X-ray source and detector were chosen to be identical with respect to real-world
XCT scans. Table 3.1 provides an overview of the used datasets. Figure 3.2 shows a
dataset representative of each category.

Dataset Name xyz-Dimensions (Voxels) Resolution Reference Porosity

E3_low 749×304×1396 10.0 µm 0.965%

E4_low 711×302×1423 10.0 µm 0.394%

E5_high 756×262×1472 10.0 µm 6.668%

E6_high 835×298×1653 11.5 µm 6.819%

E7_high 842×288×1706 11.5 µm 8.657%

WChem_low 1365×421×1674 10.0 µm 0.501%

PorePhantom 173×230×140 11.0 µm 6.123%

Table 3.1: Characteristics of the FRP datasets used in the work of PorosityAnalyzer.
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A

B

C

Figure 3.2: (A) Aeronautic industry dataset E5_high. (B) Wet-chemical analysis dataset
WChem_low. (C) Simulated XCT dataset PorePhantom.
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3.4 Setup of Segmentation Pipelines
According to the domain-specific requirement, to be able to batch-process various seg-
mentation pipelines (see Task 1, Section 3.1), we designed a computation module, which
provides a GUI for connecting segmentation-pipeline filters within the user-defined param-
eter spaces in a simple way. The core of the computation module is the batch-processing
of the created segmentation pipelines and the data storing of the calculated results.
Starting from an identical database (XCT datasets of the FRP specimens), the module
can be run on different computers simultaneously, in order to distribute the computation
load. For this purpose, we designed a file and folder structure for storing the results of
the individual computers in a shared folder (see Figure 3.3).

…

Segmentation Results 1

Computer File 1

Aggregated Computer Files

Aggregated Segmentation Results

Storage

Computer 1

Datasets

Settings File 1
Computer N

Datasets

Settings File N

…

Segmentation Results N

Computer File N

Figure 3.3: Underlying file and folder structure of the PorosityAnalyzer prototype.

Each segmentation-pipeline run of the batch process stores the information about the
used computer (e.g., CPU type and speed), the assembled segmentation pipeline and
its parameters, the calculated results (e.g., runtime, the porosity value), and the binary-
segmentation masks. In the background, this module takes care of the proper filter
linkage by setting the necessary intermediate connection steps (e.g., ensuring correct data
types). Thus, the required user-input is kept very small. To set up a batch computation,
the user has to specify the locations where the data are stored. The batch-computation
settings-file (see Figure 3.4 A) contains all the previously investigated pipelines. The
pipelines in the file will be automatically loaded to the segmentation-pipeline batch-table
(see Figure 3.4 B). Once the paths and the folders are specified, the different segmentation
pipelines can be created (see Figure 3.4 C). In addition, the log view provides information
about the current progress and the created files (see Figure 3.4 D).
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Figure 3.4: The computation module to set up and batch-process segmentation pipelines.
(A) Folder and file paths to load and save the data. (B) Drag and drop area to assemble
a segmentation pipeline (datasets (1), filters (2), pipeline (3)). (C) The accepted
pipelines (4) are shown in the batch table. (D) The log view to inform the user.
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We initially pursued a text-based approach to create a segmentation pipeline. The
individual filters of a pipeline and their parameter ranges were manually entered in the
columns of the batch table. The involved experts criticized this approach because of
the cumbersome, complicated, and error-prone data entry. In order to overcome these
problems, we opted for a drag-and-drop interface to set up the segmentation pipelines
(see Figure 3.4). A segmentation pipeline may consist of any number of steps. To set up
a pipeline, a dataset icon from the dataset list (1) is selected and positioned into the first
slot of the pipeline (3). This drag and drop process is repeated for the desired number of
filters/steps (2) to build a functional segmentation pipeline.
After the pipeline assembly is completed, the parameter-space sampling is specified
for each filter. For this purpose the filter icons in the pipeline can be clicked and the
corresponding parameter-space sampling dialog (PSD) opens (see Figure 3.5). Here,
the sampling method (regular sampling or random sampling) for each step and the
corresponding parameter ranges are specified. In the case of regular sampling, the user
defines the n-dimensional grid granularity by simply specifying the range and the number
of samples of each filter parameter. n is the number of input parameters, which is in
the range from zero to seven for the pipelines we tested. This causes the parameter
step-size to be fixed to the ratio between the parameter range and the number of samples
minus one. In the case of random sampling, the samples are selected arbitrarily inside a
user-defined parameter range.
The first version of the PSD was designed as a simple input interface for defining the
parameter ranges of a filter. However, this dialog was not well accepted by the domain
experts with the argumentation that it does not preserve the context of the pipeline’s
dataset, which makes the parameter-range specification difficult. Therefore, we equipped
the PSD with an xy-slice of the dataset, additional dataset information (e.g., dimension,
resolution), the corresponding gray-value histogram (with labeled pore and material
peaks), and a filter description. Finally, the created pipeline (see Figure 3.4 B (4))
with the defined parameter-space sampling can be added to the segmentation-pipeline
batch-table (see Figure 3.4 D).
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E3_low

The Robust Automatic Threshold (RATS) filter takes two inputs: the image to be thresholded and an image of the gradient magnitude 

of that image. The threshold is computed as the mean of the pixel values in the input image weighted by the pixel values in the gradient 

image. The threshold computed this way should be the mean pixel value where the intensity changes the most.

Lehmann G. http://hdl.handle.net/1926/370 http://www.insight-journal.org/browse/publication/134

Figure 3.5: The parameter-space sampling dialog (PSD) of the Robust Automatic
Threshold Selection segmentation (RATS) filter (see Table 3.2) as an example.

Pressing the Run Calculations button executes the defined segmentation pipelines on
the machine. As presented in Figure 3.3, the computation results of the batch-processes
will be stored in an aggregated computer file and an aggregated segmentation-results
folder. In detail, the aggregated computer file contains the following meta information:
computer name, CPU type, CPU speed, and segmentation pipeline. The aggregated
segmentation-results folder contains the run files and segmentation masks for every
computed segmentation-pipeline run. The masks are saved to disk as a 3D binary
dataset where the segmented pores have a value of one. The run file of each computed
segmentation pipeline stores the information of each single run as follows: start and elapsed
time, the porosity value, the segmentation-mask file-name, the false positive/negative
error based on the Dice-coefficients, and the pipeline parameter-values. By repeating
the segmentation pipeline setup-process on other machines, the calculation of different
segmentation pipelines can be distributed. The calculated results from the different batch-
processed segmentation pipelines serve as input for the analysis module (see Section 3.5).
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The PorosityAnalyzer primarily uses the Insight Segmentation and Registration Toolkit
(ITK) 4.6 [JMIC15] and its filter implementations. In our demonstrator framework we
use five smoothing filters, nine non-parametric segmentation filters [Bea11], and ten
parametric segmentation filters. A detailed list of the implemented filters is presented in
Table 3.2.

Filter Name Abbreviation Reference
Smoothing filters

Gradient Anisotropic Diffusion GAD [JMIC15]
Curvature Anisotropic Diffusion CAD [JMIC15]
Recursive Gaussian Gauss [JMIC15]
Bilateral Bilat [JMIC15]
Median Median [JMIC15]

Non-parametric segmentation filters
Otsu Threshold Otsu [Bea11]
IsoData Threshold Iso [Bea11]
Intermodes Threshold Inter [Bea11]
Maximum Entropy Threshold MaxE [Bea11]
Minimum Threshold Min [Bea11]
Moments Threshold Mom [Bea11]
Renyi Threshold Renyi [Bea11]
Shanbhag Threshold Shan [Bea11]
Yen Threshold Yen [Bea11]

Parametric segmentation filters
Binary Threshold Binary [JMIC15]
Robust Automatic Threshold Selection RATS [Leh06]
Multiple Otsu MOtsu [Ng04]
Watershed (Beucher) MW_B [BL06]
Watershed (Meyer) MW_M [BL06]
Confidence Connected Confi [JMIC15]
Connected Threshold Conn [JMIC15]
Neighborhood Connected Neigh [JMIC15]
IsoX Threshold IsoX –
Maximum Distance Fhw [KPSS10]

Table 3.2: Available smoothing and segmentation filters in the PorosityAnalyzer.
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3.5 Visual Analysis and Evaluation of Pore
Segmentation-Pipelines

The analysis module provides exploration and analysis methods for the large number of
results generated by applying multiple segmentation pipelines with varying presets to a
set of different datasets. The overall purpose of this module is to provide the functionality
needed by the domain experts to efficiently and conveniently perform their analysis.

In order to enable an intuitive visual-analysis workflow for segmentation data, we
follow the “overview first, zoom and filter, then details-on-demand” design mantra
by Ben Shneiderman [Shn96]. The data are analyzed on four levels-of-detail: tree
view (prefiltering stage), Overview Comparative Matrix (overview stage), SPLOM and
PRSs (analysis stage), and comparative visualizations using 2D slice views and 3D
rendering views (visual examination stage). Figure 3.6 depicts the four data representation
stages. In each stage, a portion of the data can be selected. First, the user loads all
generated segmentation data and prefilters particular segmentation pipelines and datasets
if necessary (see Section 3.5.1). The Overview Comparative Matrix shows the deviations
of the segmentation-pipelines’ porosity values from the porosity values of the reference
methods (see Section 3.5.2). Here, the user selects a pipeline/dataset combination and
analyzes it on the level of the individual segmentation runs (see Section 3.5.3). Finally, the
user visually verifies and compares the selected segmentation runs side-by-side by means
of 2D slice views and 3D views (see Section 3.5.4). By using the interconnected data
representation stages, the requirements of the domain experts, i.e., analysis, evaluation
and comparison of the candidate pipelines as well as segmentation-pipeline parameter
trade-off analysis are met (see Task 2 and Task 3, Section 3.1).
Initially, the individual views of each stage were displayed hierarchically in tab views.
With the separation into the tab views, the domain experts experienced problems as the
context to the previously selected data is lost. Therefore, we decided to present all views
of the individual stages at the same time. When selecting data in one view, the data
in all other views are automatically updated. All views can be positioned and resized
individually. In the following subsections, we describe each data representation stage of
the analysis module.

Prefiltering Analysis
Visual 

ExaminationOverview

Figure 3.6: Data representation stages of the analysis module.
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3.5.1 Prefiltering Stage

After loading the segmentation data into the analysis module we provide a collapsible and
expandable side-panel for prefiltering the data. The GUI for the prefiltering segmentation
data is shown in Figure 3.7. The loaded segmentation data are presented in the tree
view (1). Here, the top-level tree-items can be grouped either by the segmentation
pipeline or by the dataset. The grouping is selected using a combo box (2). The user
can then expand top-level items. If the top-level items are grouped by dataset, the
second-level items will be grouped by segmentation pipeline and vice-versa. Expanding
the second-level tree-items reveals all the available information about the individual
runs for the chosen segmentation pipeline/dataset combination. The filtering options (3)
can be hidden using the corresponding button (4). The user can prefilter the data by
selecting the segmentation pipelines or datasets. The contents of the tree view and the
Overview Comparative Matrix (see Section 3.5.2) are dynamically updated whenever the
filter settings are modified.
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Figure 3.7: The GUI of the optionally (A) collapsed or (B) expanded prefiltering
stage. The segmentation data are organized in a tree view (1), which can be grouped
by segmentation-pipeline or dataset (2). The filtering options (3) may be collapsed or
expanded using the button (4).
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3.5.2 Overview Stage

Since the domain experts are primarily interested in the porosity value of a dataset,
we first calculate statistical information for the resulting porosity values of all runs of
each segmentation pipeline/dataset combination and their deviations from the reference
porosity values. Based on these statistical values, we provide a high-level overview
visualization, to allow domain experts a first judgment concerning the robustness of the
porosity values (delivered by the evaluated segmentation pipelines) and concerning the
accuracy of the resulting porosities.
The segmentation data from the prefiltering stage are visualized in the Overview Compar-
ative Matrix, which shows segmentation pipelines in columns and datasets in rows (see
Figure 3.8 A (1)). The Overview Comparative Matrix provides three visualization modes:
deviation, boxplot, and histogram. The deviation mode color-codes the median porosity
deviations (in %) of each segmentation pipeline/dataset combination to the reference
porosity values by using a diverging cool-to-warm perceptually-uniform color map (2)
as proposed by Kenneth Moreland [Mor09]. The columns of the Overview Comparative
Matrix can be expanded to fit to the lengths of the segmentation-pipeline names or
collapsed (see Figure 3.8 B). In addition to the deviation mode, we want to show more
details on the distribution of the porosity values. Therefore, the box-plot mode was
designed to render a matrix of box plots. For example, Figure 3.8 C shows a box plot
for the RATS Threshold applied to the WChem_low dataset. A box plot shows the
statistical properties (lower and upper whisker, first and third quartiles, median, and
outliers) of the porosity values of a segmentation pipeline. The reference porosity value
is indicated with a vertical red dashed line and outliers are depicted with blue circles.
Similarly, the histogram mode depicts one porosity-value histogram per segmentation
pipeline inside a matrix cell. Figure 3.8 D shows a histogram for the RATS Threshold
applied to the WChem_low dataset. In the Overview Comparative Matrix, a cell, a
column, or a row may be selected. Figure 3.8 B shows a selected column of the IsoData
Threshold. After the selection is made, the segmentation data are forwarded to the
analysis stage where they are presented through a SPLOM and PRSs (see Section 3.5.3).
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Figure 3.8: (A) The Overview Comparative Matrix in (1) deviation mode with the
(2) diverging cool-to-warm perceptually-uniform color map, which indicates the median
porosity deviation (in %) of each segmentation-pipeline/dataset combination to the
reference porosity value. (B) Collapsed deviation comparative matrix with selected
IsoData Threshold column, (C) boxplot visualization, and (D) histogram visualization.

3.5.3 Analysis Stage

The analysis stage is designed to provide techniques and methods for a detailed visual
analysis of the segmentation-pipeline runs. Figure 3.9 shows the user interface for the
visual analysis of segmentation data. Here, the central view is a SPLOM (1), which
visualizes all the input and output parameters of each segmentation-pipeline run. To
assist the visual analysis, any of these parameters can be color-coded using a perceptually-
uniform color-map (2). Furthermore, a trade-off analysis is facilitated by the SPLOM.
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The reasons why a SPLOM was implemented are: a SPLOM is often used to make
correlations, trends, and outliers visible in multi-dimensional data [Mun14] and our
experts are familiar with this visual representation. When we presented the SPLOM
to the experts, they mentioned that it is difficult to interpret the data points without
seeing the underlaying segmentation data. In order to increase the understanding of the
segmented data and their parameters, we present the segmentation result in a popup
preview if the user hovers over a data point in the SPLOM. The popup preview shows
the original data superimposed with the segmentation result. A region of interest (ROI)
widget (7) is connected to the popup preview and shows the corresponding dataset
slice-wise. By specifying a rectangular region in the ROI widget, cutouts in a dataset
slice are defined and displayed in the popup preview. To compare the segmentation
results of two data points in the SPLOM, one data point can be fixed. When hovering
over another one, the differences in pore regions are displayed color-coded in the popup
preview. Figure 3.9 depicts a dark-blue fixed data point (5) and a light blue compared
data point (6). The popup preview shows a ROI of the dataset E3_low. The yellow
overlay indicates that those voxels are the same in both segmentations (fixed data point
(5) and compared data point (6)). The red overlay marks voxels that were segmented in
the compared data point (6) segmentation but are not included in the fixed data point
(5) segmentation. A blue overlay marks voxels that were segmented in the fixed data
point (5) segmentation but are not present in the compared data point (6) segmentation.

Domain experts consider it as important to assess the sensitivity of variations in input
parameters when evaluating a segmentation pipeline. Therefore, the PRSs, were imple-
mented. They operate on the histogram plots of the output parameters (porosity/porosity
deviations) and the input parameters of the corresponding segmentation pipeline. By
selecting a range in the output-parameter histogram in Figure 3.9 (3), the corresponding
range of the input-parameter histogram (4) is highlighted (yellow). Mean or median
values may be chosen by the user in the input-parameter histogram. These values are
calculated by keeping an input parameter constant and accumulating porosity or porosity
deviation values for all combinations of the remaining input parameters. The expert
can select a subset of pipeline runs by using either the SPLOM through specifying an
arbitrary selection polygon in one of the scatter plots or the PRSs by specifying parameter
ranges using two handles on each slider. The selection made in the PRSs is interactively
synchronized with the SPLOM.
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Figure 3.9: (1) The SPLOM with the different input and output parameters of a
segmentation pipeline. A parameter of choice (Deviation from Reference) is color-coded
using a (2) diverging cool-to-warm perceptually-uniform color map. (3) The porosity-
frequency histogram with a selected porosity range. (4) The parameter-range slider with
a selected range of the parameter Binary Threshold. The popup preview in the SPLOM
allows the user to compare two different segmentation results (5) and (6). (7) The ROI
widget with a user-specified ROI, which is used in the popup preview.
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3. PorosityAnalyzer

Multiple selections can be managed and organized using a selections view (see Figure 3.10).
Every selection from a list (1) can be chosen and dynamically loaded at any time (4).
When a selection is loaded, prefiltering, overview, and analysis views automatically restore
the state they had when the selection was made. This makes it easy to go back to a
previous point in time during the analysis workflow. The selections view appears as a
side-panel on the right, when the button (7) is toggled. The user can visually examine
each selection’s segmentation masks (5), or compare segmentation masks of multiple
selections (6) with 2D slices views and 3D rendering views (see Section 3.5.4).

1

2 3 4

5

6

7

RATS - SimV1: good runs

RATS - SimV1: bad runs

Binary threshold - SimV1: all runs

Figure 3.10: GUI of the selections view. (1) List of selections. (2) Adding or (3) removing
a selection. (4) Loading a selection to the analysis stage. (5) Visualizing a single selection
or (6) comparing multiple selections in the visual examination stage. Selections view
visibility switch (7).

3.5.4 Visual Examination Stage

Usually, our domain experts visually examine the result of a segmentation algorithm
by going through the volume and randomly investigating some 2D slices with specific
features. We provide the visual examination stage to compare the segmentation results
of multiple selections using 2D slice views and 3D rendering views. If a comparison of
multiple selections is performed, the corresponding 2D slice view and 3D rendering view
for each selection are placed side-by-side (see Figure 3.11). If the user interacts with a 2D
slice views (e.g., zooming, panning) or a 3D rendering views (e.g., zooming, translation,
or rotation) of one selection, the interaction results will automatically synchronize with
the views of the other selections. This approach of linked views ensures that the ROIs
for all the selection views under examination remain the same. Thus, the comparison of
the segmentation results is facilitated.

The different visual representations of the selected data in the 2D slice view are depicted in
Figure 3.12. The raw XCT data (see Figure 3.12 A) is shown in the 2D slice view to provide
the proper context for the visualizations of the segmentation data. In order to convey an
overview on how the selected pipeline runs segment the pores, we show an aggregated
segmentation-masks overlay with adjustable opacity (Figure 3.12 B). For each voxel we
calculate how many segmentation masks classify this specific voxel as a pore. Then we
encode the number of masks for each voxel, using a perceptually-uniform, colorblind-
safe color map chosen with ColorBrewer [HB03]. Such a representation indicates the
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2D

Slice

Views

3D

Rendering

Views

Optimal Segmentation Over-segmentationUnder-segmentation

Figure 3.11: Side-by-side comparing of three different selections of aggregated segmenta-
tion masks with 2D slice views and 3D rendering views (left: under-segmentation, middle:
close to optimal segmentation, right: over-segmentation).

segmented areas, and how many runs segment these areas as pores. Additional context
and reference are provided by overlaying the aggregated segmentation-masks with the
mask of the reference segmentation (see Figure 3.12 C). The opacity of the reference
segmentation-mask overlay (yellow) can be changed by the user from transparent to
opaque.

However, the segmentation masks are not capable to show exactly where the segmentation
contours are. Displaying each segmentation contour for each run in the selection would
result in an excessively cluttered visualization that is difficult to interpret even for
experienced domain experts. Therefore, only contours are shown for three representative
segmentation runs (see statistical contours in Figure 3.12 D), i.e., the runs with minimum
(blue), median (black), and maximum (red) porosity values. This allows the domain
experts to evaluate the potential extent of the selected runs’ segmentations. The colors
for the statistical contours were selected in such a way that they do not overlap with the
colors from the reference and aggregated segmentation masks. Every visualization layer
can be toggled on/off and displayed on top of each other, allowing the user to effectively
combine the various depictions (Figure 3.12 E). For the visual-analysis scenarios where
the perception of the pore shape is crucial, but 2D does not provide enough context, a
3D view is provided to the user. Aggregated segmentation masks can be rendered in 3D
using volume rendering (see Figure 3.11, 3D rendering views).
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Figure 3.12: The different overlays of selected data (over-segmentation) in the 2D
slice view. (A) Raw XCT data, (B) aggregated segmentation masks, (C) aggregated
segmentation masks with a yellow reference-segmentation mask, (D) statistical contours,
and (E) all features in combination.

3.6 Evaluation and Domain Feedback

The PorosityAnalyzer system was developed over a period of 16 months. During this
time, we closely worked together with the domain experts. To evaluate the research
prototype, a questionnaire with respect to the domain-specific tasks was compiled. The
evaluation questionnaire uses a five-point Likert scale to rate the techniques and concepts.
The scale ranges from one (poor) to five (excellent) respectively. In total, ten domain
experts participated. Most of them work with XCT data on a daily basis, have a good
knowledge of fiber-reinforced polymers (FRPs), and are well acquainted with porosity
determination for FRPs. The experience of the participants in the field of XCT ranges
from one year up to eleven years, in the field of FRPs from one year up to 13 years, and in
the field of porosity determination of FRPs from one year up to eight years. Figure 3.13
presents the results of the evaluation questionnaire. First, the questionnaire determined
how suitable the computation module and the PSD are for setting up the segmentation
pipelines by showing videos of the workflow. Overall, we got a good feedback from the
domain specialists in this respect. It was mentioned that the segmentation-pipeline setup
by drag and drop is convenient and the automatic loading of the relevant dataset file is
very comfortable. Locating the desired dataset among many others often takes a long
time in commercial software. The domain experts noted that a selection of predefined
segmentation pipelines (material dependent) would be helpful. The batch processing of
the segmentation pipelines was lauded. With the currently used software this is only
tediously possible by instantiating the program several times, setting up the different
segmentation pipelines, and processing them.

To evaluate the overview visualizations of the analysis module, the domain experts had
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to solve domain related tasks, like comparing and rating the pipelines with respect to
the reference one. Overall they performed very well, except in the case of the Overview
Comparative Matrix in boxplot mode, where they could not identify the correct pipeline.
One feature that may have caused confusion was the use of different plot scales. We then
checked the concept of the PRSs for selecting suitable parameter ranges. Concerning the
SPLOM for selecting parameters and allowing the experts a trade-off analysis, we got
quite good feedback. Especially, the SPLOM popup preview to preserve the context of the
segmentation results and the ROI widget were perceived as beneficial. We got excellent
feedback on the 2D slice views for comparing segmentation results and overlaying those
slice views with aggregated segmentation masks, reference mask, and statistical contours.
The representation of aggregated segmentation masks as 3D renderings was generally
received well by the domain experts, however some prefer the 2D slice views.

In addition to the questionnaire, we conducted an independent qualitative interview with
two domain experts who are familiar with porosity determination of XCT scanned FRP
specimens. In this interview we explained and discussed the computation and analysis
module of the PorosityAnalyzer tool. Each module was then tested by the domain experts
themselves. They created different segmentation pipelines in the computation module
and evaluated previously calculated segmentation results by using the different data
representation stages of the analysis module. In general, both experts pointed out that
the PorosityAnalyzer simplifies their work significantly, (e.g., by keeping track of the
segmentation results) and makes the porosity determination of FRPs more efficient (see
Section 3.7, case studies). Furthermore, it provides analysis possibilities, which are hard
to achieve with the currently used commercial software (e.g., comparing segmentation
pipelines with color-coded 2D slice view overlays).
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Figure 3.13: Results of the evaluation questionnaire with a five-point Likert scale ranging
from one to five respectively, i.e., from poor to excellent.60
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3.7 Case Studies
In this section we present two case studies that reflect the domain-specific requirements
and present the capabilities of our research prototype. First, we conduct a porosity
determination with non-parametric segmentation-pipelines (see Section 3.7.1) and second,
we focus on the influence of edge-preserving smoothing when determining the porosity
(see Section 3.7.2).

3.7.1 Porosity Determination with Non-Parametric Segmentation
Pipelines

Our domain experts often use a non-parametric segmentation algorithm called Otsu
Threshold, because it is fast and has no parameters to specify. Our experts found
out that the Otsu Threshold sometimes fails or provides unsatisfying results. We in-
cluded into the PorosityAnalyzer eight other non-parametric segmentation algorithms
and compared those to the Otsu Threshold. Figure 3.14 A shows the Overview Compara-
tive Matrix in deviation mode (see Section 3.5.2) for the aeronautic industry datasets
E3_low–E7_high (see Table 3.1). The datasets E3_low and E4_low have a low porosity,
datasets E5_high–E7_high have a much higher porosity. All algorithms segmented the
datasets E3_low and E4_low in approximately five seconds. The Overview Comparative
Matrix in deviation mode shows that the Otsu Threshold has a high deviation for the
low-porosity datasets. This relationship is illustrated in Figure 3.14 B and 3.14 C. All
other segmentation pipelines except Moments Threshold have a low deviation from the
reference for the low-porosity cases. The overview comparative matrix in deviation mode
shows that the IsoData Threshold works for both kinds of datasets, i.e., with low and
high porosity. Table 3.3 shows the results.
From the domain-specific perspective the IsoData Threshold is most suitable for the
aeronautic industry datasets E3_low–E7_high as it delivers robust, accurate, and fast
results for these dataset types (see Task 4, Section 3.1). Assembling and analyzing the 45
tested pipelines with the PorosityAnalyzer tool takes about 20 minutes compared to the
conventional method of the domain experts, which takes about three and a half hours.

Dataset Name
Algorithm Name Output Parameter E3_low E4_low

Isodata Threshold Deviation from Reference -0.0554% -0.0224%
Elapsed Time 4846 ms 4842 ms

Otsu Threshold Deviation from Reference 21.03% 66.65%
Elapsed Time 4976 ms 5073 ms

Table 3.3: Elapsed time and accuracy results, i.e., deviations from the reference porosity
value in %, for the Isodata Threshold and the Otsu Threshold performed on the datasets
E3_low and E4_low.
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Overview Comparative Matrix

IsoData Otsu IsoData Otsu

Deviation from Reference
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Dataset E3_lowB Dataset E4_lowC
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E5_high
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Figure 3.14: (A) The Overview Comparative Matrix in deviation mode presents the
porosity deviations from the reference porosity value of the individual segmentation algo-
rithms for the aeronautic-industry datasets. The comparison of the (pinkish) aggregated
segmentation masks in 3D of IsoData Threshold and Otsu Threshold for the datasets
(B) E3_low and (C) E4_low reveals that the Otsu Threshold has a high deviation from
the reference porosity value, because it massively over-segments the pores.
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3.7.2 Influence of Edge-Preserving Smoothing on Porosity
Determination

In order to determine the porosity of an FRP specimen, the domain experts apply a global
threshold to the raw XCT data [SKO+11]. In their daily work, domain experts typically
do not use smoothing filters. However, the use of global methods without smoothing has
the disadvantage that noise is segmented as well. Therefore, the domain experts wanted
to know, how the pore segmentation behaves if smoothing filters are used to eliminate
noise. To show the effect of smoothing filters, we have assembled two segmentation
pipelines, which operate on the PorePhantom dataset (see Section 3.3). The gray values
of this 16-bit dataset lie between 0 and 65535. One pipeline uses gradient anisotropic
diffusion (GAD), an edge-preserving smoothing method, the other pipeline does not. Both
pipelines use the Binary Threshold (see Table 3.2) to segment the pores. For a moderate
smoothing of the data, we used the following GAD filter parameters: iterations=30,
timestep=0.6874, and conductance=1. The parameter range of the Binary Threshold
filter was set to 20000–45000 with a step size of 1000 gray values. This parameter range
includes all the relevant gray values between pore gray values and material gray values.

Figure 3.15 A presents the resulting porosities of the individual segmentation runs for the
pipeline without GAD smoothing (upper points) and with GAD smoothing (lower points).
The porosities without GAD smoothing rise faster with increasing Binary Threshold
values than the porosities with GAD smoothing. A detailed look at both porosity values,
close to the reference segmentation (the reference porosity is 6.123%), shows that the
porosity difference is very small (porosity without GAD is 6.122%, with GAD it is
6.0931%). The popup preview visualizes this difference. The data point without GAD
was fixed and compared to the data point with GAD (see Figure 3.15 B, popup preview).
Identical segmentation areas are color-coded in yellow, different ones in blue. The blue
difference voxels are not included in the segmentation with GAD (compared point). The
domain experts would not classify the “lengthy” blue region as a pore. They would
classify it rather as noise. Additionally in Figure 3.16 A, B, and C, we superimposed
the segmentation masks without GAD and with GAD (purple voxels and black median
contour) with the reference segmentation (yellow voxels) and compared them in a 2D slice
view. The segmentation without GAD almost matches the reference segmentation except
for a very few voxels (see Figure 3.16 B). The segmentation with GAD is largely identical
to the reference segmentation, but does not segment the noisy voxels (see Figure 3.16 C).
The influence of the noise is illustrated in the 3D views (see Figures 3.16 D and E).
Therefore, we conclude that the used reference segmentation method is not optimal, as it
contains noise.
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Figure 3.15: Comparison of the segmentation pipelines with GAD smoothing filter and
without. (A) Resulting porosities and sampled thresholds. (B) Popup preview with blue
color-coded segmentation differences (noisy voxels).

64



3.7. Case Studies
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Figure 3.16: (A) Cutout of the raw XCT data. 2D slice (B, C) and 3D rendering (D, E)
view comparison of the segmentation masks without GAD and with GAD smoothing
(the yellow noisy voxels result from the reference).
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To find an optimal parameter set for the GADSmoothing_BinaryThreshold segmentation
pipeline, we sampled the input parameter space of the GAD filter as follows: iterations
10–80, step size 10; timestep 0.6874; conductance 0.6–2.0, step size 0.1. The Binary
Threshold was set to 32011, the same threshold value as for the reference segmentation.
For an initial selection of the input parameters, we used the PRSs. We selected the
porosity bin with the highest segmentation frequency in the output parameter histogram
(porosity range 6–6.1%). The PRSs automatically marked the corresponding input
parameter ranges (iterations 40–80; conductance 0.9–1.4 and 1.6–2.0) with yellow (see
Figure 3.17 A). These ranges were selected, saved to the selections view, and loaded to
the SPLOM. The scatter plot in Figure 3.17 B shows the selected ranges. The aggregated
segmentation masks of these segmentation classes are illustrated in the 3D rendering view.
The comparison of the two classes in 3D shows that the segmentations with conductance
0.9–1.4 contain noise, while the segmentations with conductance 1.6–2.0 do not (see
Figure 3.17 B, 3D details).
Therefore, we focused on the segmentation class with conductance 1.6–2.0. To analyze
the lower and upper end of this segmentation class, we divided it into two classes, one
with conductance 1.6–1.7 and one with conductance 1.9–2.0 (see Figure 3.17 C, scatter
plot). When examining the 2D slices of the aggregated segmentation masks, we found
that the segmentations with conductance 1.9–2.0 start under-segmenting the data (see
Figure 3.17 C, exemplary 2D slices). We discarded the segmentations with conduc-
tance 1.9–2.0 and further investigated the remaining class with conductance 1.6–1.7
(see Figure 3.17 D, scatter plot). By using the popup preview, we were able to compare
the differences of the individual segmentations. All the segmentations start to under-
segment the data except one segmentation with a conductance of 1.6 and 40 iterations
(see Figure 3.17 D1, exemplary 2D slices). Figure 3.17 D2 compares the segmentation
with conductance 1.6 and iterations 40 with all other segmentations with conductance
1.6-1.7. Only the pixels highlighted in yellow are segmented by the segmentations with
conductance 1.6-1.7 without iterations 40. This would lead to a under-segmentation (see
Figure 3.17 D2, red marked pixels in the reference segmentation). The segmentation
with conductance 1.6 and iterations 40 contains in addition to the yellow marked pixels
the blue marked pixels and thus causes a lower under-segmentation respectively is closer
to the reference segmentation. When comparing the reference segmentation (porosity
value of 6.123%) with the segmentation found (porosity value of 6.0715%), it can be seen
that the reference method over-segments the data, since at least the two pixels in the
upper row can be evaluated as outliers/noise (see Figure D2, red marked pixels in the
reference segmentation).
For this specimen type, we propose a data preprocessing with the GAD filter (iter-
ations=40, timestep=0.6874, conductance=1.6), for a precise porosity determination
(see Task 3, Section 3.1). Assembling and analyzing the 120 segmentations of the
GADSmoothing_BinaryThreshold segmentation pipeline takes about one hour with the
PorosityAnalyzer tool. With traditional methods a systematic evaluation of this number
of segmentation masks would not be possible within reasonable time.
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Figure 3.17: Finding the optimal parameter set for the GADSmoothing_BinaryThreshold
segmentation pipeline. (A) PRSs with a selected bin of the output parameter porosity and
the proposed GAD filter input parameters iterations and conductance. (B) Comparison
of the 3D rendered aggregated segmentation masks. (C) 2D slice comparison. (D) Popup
preview comparison.
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3.8 Implementation
PorosityAnalyzer was implemented in C++. The experiments were performed on a
desktop machine with an Intel(R) Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA
GeForce GTX 1080 GPU with 8 GB RAM. ITK 4.9 [JMIC15] was used to load the
datasets, to perform basic image processing, and to segment the pores (see Table 3.2).
The 3D rendering views and the 2D slice views were calculated with VTK 7.0 [SML06].
The GUI was implemented in Qt 5.8 [Gro]. The research prototype is available in the
open source framework open_iA [FWS+19].

3.9 Summary and Conclusion
In this chapter we present the PorosityAnalyzer, a tool for the detailed evaluation
and visual analysis of pore segmentation-pipelines in fiber-reinforced polymers. The
computation module was developed to conveniently set up and execute distributed off-
line computations. The analysis module is used for examining the resulting data. We
demonstrate how a number of visualization techniques can be applied for the visual
analysis of data on multiple levels-of-detail. These visualizations include the Overview
Comparative Matrix, the SPLOM with the popup preview, the PRSs, 2D slice views with
overlays, and 3D rendering views. The techniques allow the domain experts to improve
their workflow, obtain important insights into pore segmentation-pipelines, and automate
tedious manual operations. We present two use cases, indicating how PorosityAnalyzer
can be employed to compare, analyze, and obtain insights into segmentation pipelines
applied to a range of different datasets. We evaluate the research prototype with a
questionnaire and a qualitative interview to get feedback from the domain experts. The
feedback shows that our techniques make it easier to compare established as well as new
segmentation techniques and reduces the required time to compare various segmentation
algorithms.
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CHAPTER 4
Dynamic Volume Lines: Visual

Comparison of 3D Volumes
through Space-filling Curves

This chapter is based on the following publication:

J. Weissenböck, B. Fröhler, E. Gröller, J. Kastner, C. Heinzl. Dynamic Volume Lines:
Visual Comparison of 3D Volumes through Space-filling Curves. IEEE Transactions
on Visualization and Computer Graphics, Vol. 25, No. 1, pp. 1040–1049, 2019. doi:
10.1109/TVCG.2018.2864510

Follow-up publications:

J. Weissenböck, B. Fröhler, E. Gröller, J. Sanctorum, J. De Beenhouwer, J. Sijbers, S.
Karunakaran, H. Hoeller, J. Kastner, C. Heinzl. An Interactive Visual Comparison Tool
for 3D Volume Datasets represented by Nonlinearly Scaled 1D Line Plots through Space-
filling Curves. Proceedings of the 9th International Conference on Industrial Computed
Tomography (iCT 2019), Padova, Italy, 2019.
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In this chapter, we introduce Dynamic Volume Lines for the interactive
visual analysis and comparison of sets of 3D volumes. Each volume is

linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which
depicts the intensities over the Hilbert indices. We present a nonlinear scaling
of these 1D Hilbert line plots based on the intensity variations in the ensemble
of 3D volumes, which enables a more effective use of the available screen
space. The nonlinear scaling builds the basis for our interactive visualization
techniques. An interactive histogram heatmap of the intensity frequencies
serves as overview visualization. When zooming in, the frequencies are
replaced by detailed 1D Hilbert line plots and optional Functional Boxplots.
To focus on important regions of the volume ensemble, nonlinear scaling
is incorporated into the plots. An interactive scaling widget depicts the
local ensemble variations. Our brushing and linking interface reveals, for
example, regions with a high ensemble variation by showing the affected
voxels in a 3D spatial view. We show the applicability of our concepts using
two case studies on ensembles of 3D volumes, resulting from tomographic
reconstruction. In the first case study, we evaluate an artificial specimen from
simulated industrial 3D X-ray computed tomography (XCT). In the second
case study, a real-world Talbot-Lau grating interferometer (TLGI) XCT foam
specimen is investigated. Our results indicate that Dynamic Volume Lines
can identify regions with high local intensity variations, allowing the user to
draw conclusions, for example, about the choice of reconstruction parameters.
Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

4.1 Introduction
A major challenge in three-dimensional material characterization with conventional
industrial 3D X-ray computed tomography (XCT) systems are low densities and thin cell
walls, especially at low physical resolutions. One method that overcomes these challenges
is Talbot-Lau grating interferometer XCT (TLGI-XCT) [SPK+17]. It is a non-destructive
testing method, which fully delivers 3D volume information of the scanned specimen at a
high resolution to precisely capture external and internal structures (e.g., cracks) in a
single scan. TLGI-XCT is one of the most important X-ray technology innovations in
the past ten years [PKBD07]. This method provides three complementary modalities in
one scan of the specimen: (1) the attenuation contrast (AC), (2) the differential phase
contrast (DPC), and (3) the dark-field contrast (DFC).

Currently, it is common practice to reconstruct the data of the three modalities separately,
without simultaneously using the given and instructive complementary information. To
reconstruct the data from the three modalities, the conventional filtered back-projection
algorithm by Feldkamp, Davis, and Kress (FDK) is used [FDK84]. This reconstruction
algorithm is well suited for XCT data from the AC modality, as it is a fast and accurate
method. However, for the DPC and DFC modalities, the FDK reconstruction is not
optimal because the prior knowledge and the inherent physical effects of the different

70



4.1. Introduction

modalities are not considered [JRS+11, SJdD+17]. Experts in the field of computed
tomography reconstruction are therefore developing new algorithms based on appropriate
mathematical models. These correspond to the physical characteristics of the DFC
and DPC modalities in order to achieve satisfying reconstruction results with regard to
conventional methods.

The domain specialists compare the results of the different reconstruction algorithms and
their parameterizations with each other and with a reference reconstruction. Regions
in the volume with a high ensemble variation of the intensities (e.g., feature edges on
interfaces) are of great interest to the experts, as the behavior of the reconstruction
algorithm can be deduced through changing specific parameters. The comparison is
typically done visually. It is based on 2D gray value slices through the volumes arranged
side-by-side. Experts perform this comparison on a case-by-case basis. They try to
determine promising algorithms and suitable parameters, for instance, by checking for
noise and artifact suppression. The intensity differences between the various volumetric
reconstructions are typically rather small. Therefore it is difficult for an expert to judge
whether a particular algorithm or parameter set provides better results (e.g., sharper
edges) than another one. This problem gets even worse if several or even many different
reconstruction results of an algorithm are compared (e.g., due to parameter variations).

Due to a close collaboration with reconstruction specialists, we were able to analyze their
workflow and identify the following tasks when comparing many volumes with specific
regions of minor intensity differences:

• Task 1: Compare several reconstruction volumes with each other

• Task 2: Identify interesting spatial regions based on high local intensity variations

• Task 3: Reveal repeating patterns in the spatial domain, which are of high variance
among all ensemble members

• Task 4: Find the most suitable volume in the ensemble

To address domain-specific requirements, we introduce Dynamic Volume Lines for the
interactive visual analysis and comparison of 3D volumes using nonlinearly scaled 1D
Hilbert line plots. We build upon the work of Demir et al. [DDW14], who also use the
Hilbert linearization to analyze 3D data. As space-filling curve the Hilbert curve traverses
the entire 3D volume. For the line plot the space-filling curve is straightened along the
horizontal axis. On the vertical axis the intensities at the specific volume positions are
shown. We extend the approach of Demir et al. by an adaptive, automatic, and dynamic
nonlinear scaling of the horizontal axis, which allows the user to focus on interesting
regions in the volumes. The nonlinear scaling highlights regions of high variation in
the ensemble and optionally hides uninteresting background regions. Abstracting and
reformatting 3D volumes as line plots is chosen because the domain experts are familiar
with line graphs, which they use on a daily basis. The workflow of Dynamic Volume Lines

71



4. Dynamic Volume Lines

starts with the extraction of a region of interest (ROI), which is for each volume analyzed
at the same position and of the same size (see Figure 4.1 A). A Hilbert space-filling curve
for the extracted ensemble volumes is generated by mapping voxel coordinates and the
corresponding intensities in 3D to 1D Hilbert indices (see Figure 4.1 B). The nonlinear
scaling of a Hilbert line plot is built by summing up the local ensemble variations to
formulate a cumulative importance function (see Figure 4.1 C), which serves as basis for
the interactive visualization techniques (see Figure 4.1 D–F). Our main contributions are:

• Design and development of Dynamic Volume Lines, to compare ensem-
bles of 3D volumes, including the following key features:

– Nonlinear scaling of the 1D Hilbert line plot, which is built from a cumulative
importance function (see Section 4.4.2)

– Interactive nonlinearly scaled histogram heatmap, which encodes the intensity
frequencies (see Section 4.4.3.1)

– Interactive nonlinearly scaled 1D Hilbert line plots of the individual volumes
in the ensemble (see Section 4.4.3.2)

– Interactive scaling widget, which illustrates the locally varying scaling factor
(see Section 4.4.3.3)

• Evaluation of the tool based on two case studies from the XCT domain

In the subsequent Section 4.2, we review the related work on comparative and ensemble
visualization. Section 4.3 describes the data acquisition and the used datasets. In
Section 4.4 we explain Dynamic Volume Lines, which includes the Hilbert curve genera-
tion, the nonlinear scaling based on a cumulative importance function, and the interactive
visualization techniques. Section 4.5 presents the evaluation of the developed tool based
on two case studies. We conclude and point out potential future work in Section 4.6.
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Figure 4.1: The Dynamic Volume Lines workflow: (A) extraction of interesting regions,
(B) generation of a space-filling Hilbert curve, (C) nonlinear scaling of the Hilbert line
plots, (D) interactive nonlinearly scaled histogram heatmap, (E) interactive nonlinearly
scaled 1D Hilbert line plots, (F) and interactive scaling widget.
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4.2 Related Work

The related work is mainly in the areas of comparative and ensemble visualization,
but also in the fields of visual parameter space analysis and interactive visual analysis.
Gleicher et al. [GAW+11] provide a taxonomy to group comparative visual designs into
one of three basic categories: juxtaposition, superposition, and explicit encoding. In the
work of Malik et al. [MHG10], slices from different volumes are compared in a hexagonal
arrangement. This visual representation works only for a rather small number of datasets
to be compared. Schmidt et al. [SPA+14] present a tool for the comparative visual
analysis of 3D meshes, which enables the simultaneous comparison of several meshes
and the interactive exploration of their differences. In an earlier work [SGB13], they
present a method for visualizing differences and similarities in large sets of images. The
technique preserves contextual information, but also allows the user to perform a detailed
analysis of subtle variations. Based on magnetic resonance cartilage-imaging techniques,
Mlejnek et al. [MEV+05] propose 3D glyphs, called Profile Flags, for the probing of sets
of underlying curve data. Weissenböck et al. [WAG+16] introduce a system to evaluate
the porosity in 3D volumes. They provide 2D slice views and 3D renderings views to
compare different pore segmentation results due to varying segmentation parameters.
Many of the ensembles investigated in these works result from analyzing the parameter
space of some algorithm, for which Sedlmair et al. [SHB+14] present a conceptual
framework to guide and systematize research endeavors.

Ensemble visualization often uses statistical summaries for the comparison of many
similar datasets. Ensemble-vis by Potter et al. [PWB+09] is a framework consisting of
an interactively linked overview and statistical displays for the discovery and evaluation
of simulated meteorology outcomes. Jarema et al. [JDKW15] provide a visual-analysis
user-interface with multiple linked views to support the comparative exploration of
2D vector-valued ensemble fields. Fröhler et al. [FMH16] present an interactive tool
for exploring and analyzing the parameter space of multi-channel segmentation algo-
rithms and the corresponding ensemble of segmentation results. Several works have been
published, which embed descriptive statistic measures such as minimum, median, and
maximum in Functional Boxplots [SG11], Contour Boxplots [WMK13], and Curved Box-
plots [MWK14]. Genton et al. [GJP+14] developed Surface Boxplots for the visualization
and exploratory analysis of samples of images to detect potential outliers. They use the
notion of volume depth to order the viewed images, which are interpreted as hightfields.
Raj et al. [RMP+16] examine the effectiveness of Contour Boxplots in the medical do-
main of brain atlas analysis. They extend Contour Boxplots to 3D to visualize and interact
with ensembles of 3D isosurfaces. Demir et al. [DJW16] determine the most central
shape from a given set, to quantify a region-wise centrality, and to compute the locally
most representative shape. Konyha et al. [KLM+12] and Matkovic et al. [MGKH09]
focus on the interactive visual analysis of ensembles of curves called families of curves
or families of surfaces using data aggregation and attribute derivation. Piringer et al.
[PPBT12] extend the work on feature-preserving downsampling of 2D functions. They
discuss a design study of an interactive approach for the comparative visual analysis of
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2D function ensembles.

In the context of visual analysis, the state-of-the-art report by Heinzl and Stappen
[HS17] closes a gap between visual computing and material science. Torsney-Weir et
al. [TWSM17] propose Sliceplorer to visually examine multi-dimensional continuous
scalar functions with 1D slices. Their technique combines the benefits of topological
views, i.e., screen space efficiency, with those of slices, that are a close resemblance of the
underlying function. Another work of Demir et al. [DDW14], presents Multi-Charts, an
interface to visually analyze 3D scalar ensemble fields by linearizing the 3D data points
along a space-filling curve. Our approach is similar to Multi-Charts, as we also use the
Hilbert space-filling curve to linearize 3D volumes and represent the volumes as 1D line
plots. Demir et al. represent the individual ensemble members as multiple stacked and
combined bar and line charts at different levels of detail. For analyzing such regions the
user has to zoom in and out. This leads to a loss of context. A significant difference
in our work is the computation of a nonlinear scaling of the horizontal axis based on
local ensemble variations. The nonlinear scaling allows us to depict all 3D volumes as
1D line plots, which can be presented in one visualization. As a result, uninteresting
regions (with low ensemble variance) are compressed in the line plots, and interesting
regions (with high ensemble variance) are expanded. Thereby, we can optimally use the
available screen space and no zooming is necessary in the first place, as we provide insight
into the interesting regions from the initial overview state. The individual line plots of
the corresponding 3D volumes can be aggregated using Functional Boxplots. Thus, we
provide a statistical overview of the ensemble. In addition, the scaling widget indicates
the nonlinear scaling of the data. Finally, we support an importance-driven selection by
defining ranges based on a cumulative importance function.

4.3 Datasets
This section briefly explains how the Talbot-Lau grating interferometer (TLGI) industrial
3D X-ray computed tomography (XCT) data is acquired (see Section 4.3.1) and which
datasets are used (see Section 4.3.2).

4.3.1 Data Acquisition

In contrast to conventional XCT (see Section 1.2), TLGI-XCT delivers three complemen-
tary modalities, i.e., attenuation contrast (AC), differential phase contrast (DPC), and
dark-field contrast (DFC) in a single scan. The three modalities are perfectly registered
to each other. AC provides information on the attenuation of the X-ray beam intensity
and thus is equivalent to conventional X-ray imaging. DPC is related to the index of
refraction and image contrast, which is achieved by the local deflection of the X-ray
beam. DFC reflects the total amount of radiation scattered at small angles, e.g., caused
by microscopic structures in the sample like particles, pores, fibers, struts, or cracks. In
addition, the DFC modality produces a strong signal and a high contrast at interfaces
and reveals information that is undetected by AC and DPC imaging.
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4.3.2 Dataset Description

The first ensemble consists of 3D reconstruction datasets of an artificial specimen from
simulated XCT [REK+16] of the AC modality with intensities between 0 and 65535. The
size of each dataset is 128× 128× 128 voxels and the data type is unsigned short (see
Figure 4.2 A). The artificial projection images are generated by calculating penetration
lengths of primary monochromatic X-rays through the specimen. The specimen is
represented by surface models of three cylinders, one sphere, and one cube. Attenuations
are calculated by applying Lambert-Beer’s law. The X-ray scatter and the blurring
effects were disabled for the simulation. The virtual projection images are processed
using the FDK reconstruction algorithm. We applied a Gaussian filter with increasing
smoothing effect to generate five additional volumes. No smoothing was applied to the
first dataset. The individual variances of the Gaussian smoothing in the range [0.2, 1.0]
are increased by a step of 0.2. In a preprocessing stage, a user-defined ROI is selected and
applied to all ensemble volumes (see Figure 4.2 B). The resolution of the ROI cutouts are
16× 16× 16 voxels. Figure 4.2 C depicts an xy-slice of the dataset with no smoothing.
Figures 4.2 D–H show xy-slices of the different results from the Gaussian smoothing
filter.

No smoothing

Var = 0.2 Var = 0.4 Var = 0.6 Var = 0.8 Var = 1.0

A B C

D E F G H

Figure 4.2: (A) 3D reconstruction dataset of the artificial specimen from simulated XCT
of the AC modality, (B) with an ROI cutout of a cube. (C) shows an xy-slice view of the
dataset without Gaussian smoothing. (D–H) depict the xy-slice views of the five datasets
with an increasing variance of the Gaussian smoothing between 0.2 and 1.0.

The second ensemble consists of 16 datasets from a real-world open-cell polyurethane
foam specimen, which was scanned with a Bruker Skyscan 1294 TLGI-XCT device at a
resolution of 11.4 microns. The size of each dataset is 550× 550× 250 voxels and the
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data type is unsigned short. To compare the individual datasets, we normalized the
intensities (itk::NormalizeImageFilter [JMIC15]) by setting the mean to zero and the
variance to one. We then rescale the intensities between 0 and 65535. Figure 4.3 A shows
the thin cell walls of the foam specimen, which are revealed by the DFC modality. In the
middle of the foam specimen we cut out an ROI of 64× 64× 64 voxels (see Figure 4.3 B).
Figure 4.3 C depicts an xy-slice of the cutout reference dataset, which was reconstructed
from 900 projections using the FDK algorithm. The center of Figure 4.3 C exhibits ring
artifacts. The other 15 datasets were reconstructed using the simultaneous iterative
reconstruction technique (SIRT) [GB08] with 900 projections and the following increasing
iteration parameters: 10, 50, 100, 150,...,700. Figures 4.3 D–M present the SIRT volumes
with increasing iteration parameters.

FDK reference

Iter = 10 Iter = 50 Iter = 100 Iter = 150 Iter = 200

Iter = 300 Iter = 400 Iter = 500 Iter = 600 Iter = 700

A B C

D E F G H

I J K L M

Figure 4.3: (A) 3D reconstruction dataset of a real-world TLGI-XCT foam specimen
of the DFC modality, (B) an ROI cutout. (C) shows an xy-slice view of the FDK
reconstructed reference dataset with ring artifacts in the center. (D–M) depict the
xy-slice views of the SIRT datasets with iteration parameters increasing from 10 to 700
exemplarily.

77



4. Dynamic Volume Lines

4.4 Dynamic Volume Lines
In this section we explain the generation of the Hilbert curve based on the 3D voxel
intensities and compare the line plots of the Hilbert curve with the line plots of the
scan line curve (see Section 4.4.1). Furthermore, we describe the nonlinear scaling of the
Hilbert line plots based on local ensemble variations (see Section 4.4.2).

The basic motivation of Dynamic Volume Lines is to linearize 3D volumes along a space-
filling curve. The resulting line plots are a familiar representation to engineers. Without
occlusion, many volumes can be compared through their line plots. A comparison of
many volumes in their original 3D space that differ only slightly from each other turns
out to be difficult with traditional methods. For example, a direct volume visualization
of many datasets is plagued by severe clutter and occlusion problems. This effect is
further reinforced by the increasing number of volumes to compare. The same is true
for 2D slice views. Arranging two or four slice views of different volumes side-by-side
would be feasible, but with an increasing number of volumes to compare it is nearly
impossible to find regions where the volumes differ. For example, if individual voxels
differ by 5000 intensities, this difference is difficult to perceive as brightness difference,
even for an expert. For a line plot in a range of 65000 intensities on the vertical axis,
this amplitude drop would be 7% and thus easier to recognize as positional difference. A
positional encoding is much more effective than color coding to indicate subtle differences.
Comparing intensities is much easier through line plots, in contrast to having first to
match them in two or more 2D (or 3D) views and then comparing their color encoding.
One could apply statistical aggregation to determine a volume where the voxels contain
the local ensemble variances. But even in such a reduced data, rendering is affected
by clutter and occlusion. For example, to make differences visible in the interior of the
volume, the opacity must be set to a low value. However, larger differences are then only
vaguely recognizable. Small differences will be lost. In addition, statistical aggregation
volumes provide only a summary or overview and would require additional detailed
visualizations to compare specific members in an ROI. In our approach the differences
between the individual members can easily be inspected by comparing line plots.

A drawback of linearizing volumes is the loss of spatial coherency. Among the many
possibilities of space-filling curves we decided for one which is preserving the spatial
coherency as much as possible. The wigglyness of the Hilbert curve ensures that very often
neighboring voxels in the 3D volumes are mapped to nearby locations in the straightened
Hilbert line plot. We compare the spatial coherence of the Hilbert curve with respect
to another simple volume linearization, i.e., the scan line curve where the volume is
traversed slice by slice and scan line by scan line within a slice. Switching scan lines or
slices introduce large spatial incoherences. Such incoherences appear with Hilbert curves
as well, but much less.
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4.4.1 Hilbert Space-Filling Curve Generation

In general, with space-filling curves, n-dimensional regular grids can be completely
traversed and the grid points can be brought into a one-dimensional linear order. In this
sense volumes are three-dimensional regular grids. There are many different space-filling
curves such as the Hilbert curve, the Peano curve, or the Z-curve. An obvious approach
to linearize the intensities of a 3D volume is to traverse the voxels in z-, y-, and x-axis
order along a scan line curve, line by line and slice by slice (see Figure 4.4 A). The
disadvantage of this approach is that there are large jumps in the scan line curve between
the last voxel of the previous row and the first voxel of the current row and the last voxel
of the previous slice and the first voxel of the current slice, respectively. In contrast, the
Hilbert space-filling curve traverses every point of a square, a cube, or more generally, an
n-dimensional hypercube, by preserving locality much better. Points close to each other
in the n-dimensional space are very often close in their order along the Hilbert curve and
vice versa [GL94]. This results in fewer large jumps. Therefore in this work, we focus on
the Hilbert curve, as it preserves the locality best [MJFS01].

(1)

(2) (3) (4)

Seed curveSlice Z Slice Z+1

A B C

D E

Figure 4.4: (A) shows the scan line curve of a 3D volume by traversing the voxels along
their appearance. The blue dots mark a large jump due to a line change and the red
dots mark a large jump due to a slice change. (B) depicts the Hilbert curve of order one
(initial seed curve). (C–D) illustrate the individual steps to generate a Hilbert curve of
order two in 2D space. (E) shows the Hilbert curve of order three.

In the following, we describe the generation of the space-filling Hilbert curve exemplarily
in 2D space [HRC07]. Consider the initial seed curve defined on a 2× 2 grid as shown
in Figure 4.4 B. It is called order one Hilbert curve. Based on an order k Hilbert curve
defined on a 2k × 2k grid, we define the order k+1 Hilbert curve on a 2k+1 × 2k+1 grid
according to four steps (see Figures 4.4 C–D):
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Figure 4.5: Difference between the scan line curve and the Hilbert curve due to large
jumps and different locality preservations. The six datasets of the artificial specimen (see
Section 4.3.2) are represented by color-coded line plots (from light-green to blue). The
line plots are based on the (A) scan line curve and on the (B) Hilbert curve.

1. Place a copy of the curve in the lower right cell and rotate it 90° counter-clockwise.

2. Place a copy of the curve in the lower left cell and rotate it 90° clockwise.

3. Place a copy of the curve in each of the upper cells.

4. Connect the curves with each other.

The resulting space-filling curve visits every voxel exactly once and assigns it a scalar index
resulting from the traversal order (Hilbert index). The Figures 4.4 B, D(4), and E show
the Hilbert curves of order one, two, and three in 2D space. Figure 4.1 B (on the right)
shows the Hilbert curve of order one in 3D space.

In the case of Dynamic Volume Lines, all 3D volume datasets are linearized using the
implementation of Hamilton and Rau-Chaplin [HRC08]. It generates a Hilbert space-
filling curve where the volumes do not need to have the same number of voxels along the
x-, y-, and z-axis. The resolution along the individual axes also need not be a power of
two. Figure 4.5 illustrates the difference between linearizing along the Hilbert curve and
the scan line curve. It depicts the six volumes of the artificial specimen (see Section 4.3.2),
each represented by a color-coded line plot (from light-green to blue). The scan line plots
in Figure 4.5 A fluctuate more, due to less spatial coherence, as compared to the Hilbert
line plots (in Figure 4.5 B).
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4.4.2 Nonlinear Scaling of the Hilbert Line Plots

When generating the Hilbert curve for a dataset of 16 × 16 × 16 voxels in size, 4096
Hilbert indices are created. Currently the horizontal screen resolution of a standard PC
monitor is typically between 2000 and 3000 pixels. If one wants to display all the 4096
Hilbert indices as points in a 1D Hilbert line plot on the monitor, it turns out, that the
horizontal screen resolution is not sufficient to assign each Hilbert index to its own pixel
column. This problem becomes even more severe with increasing volume size. Linearizing
a volume reduces it to a simple line plot, but with a tremendous horizontal resolution,
i.e., number of voxels. This requires automatic scaling along the horizontal axis so that
important regions get the screen space they need. Unimportant regions like background
can be drastically reduced in their screen space or even removed. To counteract the
problem of the limited screen space, we apply a nonlinear scaling to the Hilbert line
plot. Since the domain experts are interested in those regions of the dataset where the
variation of the intensities is high, we compute the maximum local ensemble variation Vh

for every Hilbert index as follows:

V h = max
∀m∈Mh

Intensityh(m)− min
∀m∈Mh

Intensityh(m) (4.1)

m defines an ensemble member of a local ensemble Mh at a discrete Hilbert index h,
Intensityh defines the intensity at Hilbert index h for member m.

Inspired by the work of Mindek et al. [MMGB17] and Lindow et al. [LBH12], we
formulate the discrete local importance function fl based on the maximum local ensemble
variation Vh:

fl(h) =
(

Vh

max Vh

)p

(4.2)

To be able to filter for a specific importance value, we do a normalization by the maximally
occurring local ensemble variation. To influence the nonlinear scaling, we introduce an
exponent p, which can be adapted by the user. Setting this parameter to zero means equal
importance for all Hilbert indices, setting it higher than zero increases the importance
value for Hilbert indices with a high variance in the ensemble. Exponent p can be adapted
by the user to fine-tune the importance value according to the individual application
scenario. By summing the local importance-function values, we define the cumulative
importance function fc as follows:

fc(h) =
h∑

i=0
fl(i) (4.3)

The cumulative importance-function values serve as a nonlinear mapping to compress the
distances between the Hilbert indices (on the horizontal axis). Figure 4.1 C illustrates the
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calculation of the nonlinear mapping. Figure 4.6 illustrates the effect of nonlinearly scaling
the Hilbert line plots. The regions indicated with red in Figure 4.6 B are compressed
(respectively uncompressed in Figure 4.6 A) by the nonlinear scaling because of the low
ensemble variation in these regions. In addition, we allow the user to set a threshold
for intensities that are not of interest (e.g., areas of air in the dataset). For these
background areas (see Figure 4.7) fl is fixed to a value of 0.025. This value ensures
that the background areas are still sufficiently visible, but at the same time occupy little
screen space. By increasing the parameter p, the width of the background regions can be
adjusted.
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0 400300 900

Nonlinear scaling of the Hilbert indices

In
te

n
s
it
ie

s

0 400 900300 850

Compressed region Compressed region

In
te

n
s
it
ie

s

A

B

Figure 4.6: Effect of the nonlinear scaling. (A) Constantly scaled 1D Hilbert line plots of
six 3D volumes. (B) Nonlinearly scaled 1D Hilbert line plots of the same six 3D volumes.

4.4.3 Visualization Techniques

Dynamic Volume Lines provides multiple linked views and follows the visual information-
seeking mantra by Ben Shneiderman, “overview first, zoom and filter, then details-on-
demand” [Shn96]. Two charts, one with nonlinear scaling and one with constant scaling,
are arranged on top of each other with a scaling widget in-between. An overview is
provided through the nonlinearly scaled histogram heatmap visualization. Background
regions can be filtered out. If the user zooms into the chart, details for each volume are
provided through the 1D Hilbert line plots. An orientation widget displays the size and
position of the currently visible chart area in light-blue compared to the overall chart
size, which is shown in gray (see bottom of Figures 4.7 and 4.8). In addition, we enable
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brushing and linking to immediately highlight the affected voxels or Hilbert indices when
performing a selection in the 1D Hilbert line plots or in the 3D spatial view, respectively.

4.4.3.1 Interactive Histogram Heatmap Visualization

The histogram heatmap visualization provides an overview of the intensity distribution
in the volume ensemble. To be able to fit the full volume into a chart with the width
of the screen, we split the x-axis of the nonlinearly scaled chart into intervals of equal
width. Due to the nonlinear scaling, the intervals may include a varying number of
Hilbert indices. For each interval we then compute a single histogram of the intensities
at the included Hilbert indices, over all ensemble members. The single histogram is
visualized as a heatmap through a vertical bar, all histograms together form a histogram
heatmap. The default width of each histogram bar is 10 pixels, and by default each
histogram has 64 bins. These parameters can be adapted by the user to best fit the size
and intensity distribution of the currently analyzed volumes. To improve the performance
in computing the histogram heatmap, we adapt a segment tree [dBCvKO08]. A segment
tree is a binary tree used for storing segments in the range 0...n−1. Each node represents
a segment and is assigned the corresponding histogram. The segment of a leave node
covers only one Hilbert index (voxel), the segment of the root node covers all Hilbert
indices. The segment tree partitions an arbitrary interval into a minimal set of segments
(of varying sizes). With this, we avoid to compute the histogram of an interval based
on single voxels. Instead we combine the histograms of the highest-level nodes, whose
segments are included in the requested interval. The root node of the segment tree
contains the entire segment [0, n − 1]. A leaf node represents an elementary segment,
which corresponds to one Hilbert index, i.e., one voxel. It is assigned the histogram of all
the intensities at that voxel throughout the entire volume ensemble. The internal nodes
merge the segments of their child nodes. The segment tree can be serialized using an
array of size 2 ∗ n− 1. The internal nodes are stored in the first half of the array, the leaf
nodes are stored in the second half of the array. The left child of each node at index i
can be found at index 2 ∗ i+ 1, the right child at index 2 ∗ i+ 2. The segment tree is built
bottom-up by taking the pairs of nodes with indices (2 ∗ i+ 1, 2 ∗ i+ 2) and aggregating
their histograms into the histogram of the parent at index i. The construction of the
segment tree is performed for every ensemble and takes O(n) time. In our case, each
node of the segment tree contains the histogram for a segment of a certain contiguous
range of Hilbert indices. A vertical bar of the histogram heatmap is created by summing
up each histogram of the individual volumes. Due to the nonlinear scaling, many Hilbert
indices may be covered by a vertical bar of the histogram heatmap. Without the segment
tree, a histogram would have to be calculated from all these Hilbert indices. With the
segment tree, a histogram for a vertical bar can be generated in O(logn) time, since only
a few nodes need to be traversed. The segment tree therefore supports efficient rescaling
of the charts.

In the figures in this paper, the extended black body scheme proposed by Moreland [Mor16]
is used as color map for the histogram heatmap, but other predefined color maps can be
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Figure 4.7: The histogram heatmap overview visualization with the extended black body
color map. White areas indicate a high concentration of intensities. This is the case if all
ensemble members agree on a small range of intensities, i.e., the variation in this region
is low. A high variation is indicated by a broader distribution in violet, red, and yellow.
Light-orange background areas hide the uninteresting intensities below an intensity of
30000. The orientation widget indicates the visible chart area in light-blue.

selected by the user. Figure 4.7 shows an example histogram heatmap. White regions
denote a high concentration of intensities in a single bin. This is the case if all ensemble
members agree on a small range of intensities, i.e., if the variation is low in that region.
In contrast, a high variation is indicated by a broader distribution in violet, red, and
yellow colors from the middle of the color map. The focus in XCT images is typically on
regions containing an object, therefore areas containing only background, i.e., air, are
not of interest and can be ignored for the analysis. The background areas, where the
intensities of all ensemble members are below a user-defined threshold, are assigned a
very low importance value and therefore are highly compressed in the nonlinear scaling.
Setting the background threshold is optional, a value of zero means that the background
is left out altogether. Instead of showing a histogram, these background regions are
depicted by light-orange boxes. In this fashion, we can identify interesting regions, i.e.,
those with high local variation, which addresses Task 2 from Section 4.1.

4.4.3.2 Interactive 1D Hilbert Line Plot Visualization

In the 1D Hilbert line plots, for each volume, the intensities are plotted on the vertical axis
over the Hilbert indices on the horizontal axis. Each plot is assigned a distinctive color
taken from the Metro Colors scheme of Material UI [7Sp], as can be seen in Figure 4.8 A.
When zooming into the histogram heatmap, the 1D Hilbert line plots are activated
automatically as soon as the range of currently visible Hilbert indices fits on the screen
without aggregation. The 1D Hilbert line plots can also be shown as an overlay on the
histogram heatmap. Specific ensemble members can always be activated and deactivated
by clicking on them in the legend. The current mouse position is highlighted by a position
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Figure 4.8: (A) The nonlinearly scaled chart shows the differently colored 1D Hilbert
line plots for each volume. The intensities are plotted on the vertical axis over the
Hilbert indices on the horizontal axis. The current mouse position is highlighted by an
orange position marker line, which shows the Hilbert index and intensity at that position.
(B) depicts the scaling widget, which emphasizes the nonlinear scaling. (C) shows the
constantly scaled chart with the individual 1D Hilbert line plots.

marker line (the orange line in Figure 4.8 A and C), augmented with a tool-tip displaying
the Hilbert index and intensity at that position. For better visibility and to better
visually link the nonlinearly scaled and the linearly scaled chart, this line is updated
simultaneously in both charts. Visualizing two or more 1D Hilbert line plots side by side
enables a detailed analysis and comparison of all ensemble members, addressing Task 1
and Task 4 from Section 4.1.

Dynamic Volume Lines provides several ways to select regions of interest. The user
can perform rectangular multi-selections directly in the charts. Additionally, all Hilbert
indices within a specified importance range can be selected by defining upper and lower
bounds. Furthermore, the user can perform a selection in the 3D spatial view, by marking
a rectangular region with a dragging interaction. This selects all voxels inside of the
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cuboid region that is spanned by projecting the rectangle from the near plane of the
viewing frustum along the viewing direction to the far plane. In either case, all intervals in
the Hilbert line plot falling into the selected region are highlighted. They are emphasized
in the scaling widget as well, and the respective regions in the selected ensemble members
are displayed in a separate 3D visualization. As a result, different or similar areas in
the ensemble of reconstruction volumes can be identified and thus repeating patterns in
the data (e.g., ring artifacts) can be exposed. This addresses Task 3 from Section 4.1.
Optionally, we provide an aggregated view of the individual 1D Hilbert line plots using
Functional Boxplots [SG11]. The Functional Boxplots show statistics such as the lower
and upper whiskers, the median, and the interquartile range (see Figure 4.10 C).

4.4.3.3 Scaling Widget Visualization

Dynamic Volume Lines depicts a nonlinearly scaled chart at the top and a constantly
scaled chart at the bottom, both showing the histogram heatmap visualization as well as
the Hilbert line plot visualization. Early prototypes just had those two charts on top of
each other. Using those early prototypes together with the domain experts, we realized
that an explicit visualization of the nonlinear scaling is necessary. For this purpose,
the current design includes the scaling widget, as shown in Figure 4.8 B. Each single
histogram of the histogram heatmap in the nonlinearly scaled chart is mapped to the
corresponding histogram in the constantly scaled chart. If the line plots are visible, each
Hilbert index in the nonlinearly scaled chart maps to the corresponding index in the
constantly scaled chart, respectively. Small rectangles at the top of the scaling widget
each represent a histogram or Hilbert index. Their gray values encode the local ensemble
variation. Black represents a low variation, white a high variation. From these rectangles
at the top, trapezoids extend to the bottom. Their color is gradually shifting to an
average gray value, which represents the constant scaling applied in the lower plot. The
position marker line is also shown in the scaling widget, linking the nonlinearly scaled
chart at the top with the constantly scaled chart at the bottom, as shown in Figure 4.8.

4.5 Case Studies

In this section we present two case studies that reflect the domain-specific requirements
and present the capabilities of Dynamic Volume Lines. First, we analyze reconstruction
data of the artificial specimen from simulated XCT (see Section 4.5.1), and in our second
case study, we analyze the real-world TLGI-XCT foam specimen (see Section 4.5.2).

4.5.1 Artificial Specimen from Simulated XCT

The specimen analyzed here is an artificial dataset from simulated XCT with three
cylindrical bars orthogonal to each other (see Section 4.3.2). Two of the bars have
attachments at their ends, one of which is a sphere, the other one is a cube. Different
levels of smoothing produce a volume ensemble, as shown in Figure 4.2. The ROI
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cutout for this analysis covers the end of the bar with the attached cube, as shown in
Figure 4.9 A.

The analysis goal for this dataset mainly has been to determine interesting regions, which
correspond to areas where the most changes happen in the ensemble. We use a synthetic
dataset in order to show the basic behavior of Dynamic Volume Lines under well-defined
conditions. We set a filter for regions with high local variations, in this case we select an
importance range between 0.5 and 1. The 3D spatial view displays the respective regions
in each member, as can be seen in Figure 4.9 B. The voxels displayed there, clearly
indicate that the regions with most changes are located at the edges of the cube. The
selection also gets highlighted in the nonlinearly scaled Hilbert line plot and the scaling
widget shown in Figure 4.9 C and 4.9 D. The scaling widget visualizes the importance
through the color coding (white to light-gray for the selection) and by the trapezoidal
shapes, which are much broader at the top as compared to the bottom. The background
threshold is set to 30000. Intensities below this threshold correspond to air and are not
of interest for this analysis. Figure 4.9 C shows these background regions, which are
marked with light orange boxes. The parameter p to influence the nonlinear scaling
(see Section 4.4.2, Equation (4.2)) is set to 1.4. For this dataset, this setting ensures a
good balance between emphasizing regions with high variances, but still ensuring that
background regions and regions with low variances remain visible.

4.5.2 Real-world TLGI-XCT Foam Specimen

We analyze the ensemble of 16 volumes from the real-world TLGI-XCT foam specimen
(see Section 4.3.2) as shown in Figure 4.3. Each volume of the ensemble is represented
by a Hilbert curve of length 262144. The histogram heatmap displayed in Figure 4.10
A shows that there is a broad variation in the lower intensities, indicated by the white
regions. There are less intensities in the upper range, and the histogram colors indicate
lower frequencies there. This implies that most of the space is occupied by voids, the
remaining space is left to the cell walls.

When zooming in and viewing the 1D Hilbert line plots as shown in Figure 4.10 B, one
can see at a glance that the volumes differ vastly in their local intensity variations. The
ensemble member corresponding to the bottom, dark-green Hilbert line plot is nearly
flat, indicating a low contrast of the intensities. The topmost, light-green plot shows
highly varying intensities, revealing a high contrast. Figure 4.10 C gives the Functional
Boxplots of the 1D Hilbert line plots (shown in Figure 4.10 B). The gray interquartile
range covers the volumes with iteration values from 250 to 650. The volume with 500
iterations is the median. In areas of low local intensity variation, the minimum and
maximum of the Functional Boxplots are very close to each other. The background
threshold is set to zero, because in this analysis scenario we are interested in low intensities
as well. Since there is no compression due to the background, there are more voxels
competing for available screen space. The parameter p to influence the nonlinear scaling
(see Section 4.4.2, Equation (4.2)) is increased to 2 in order to compress regions with low
variances more and to expand interesting regions with high variances.
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Figure 4.9: (A) 3D rendering of the volume with no smoothing. (B) 3D volume renderings
of the selected voxels for all six ensemble members. (C) Corresponding Hilbert line
plots with highly important regions selected. (D) Scaling widget with highlighted red
selections.

We select regions with an importance value between 0.1 and 1 (high variation of the
intensities). As can be seen in Figure 4.11 D, only the cell walls show such high variations.
Based on the importance function, the cell walls can be separated easily. The selected
indices are highlighted in the scaling widget shown in Figure 4.11 E. Inspecting the Hilbert
line plots (see Figure 4.10 B) and the 3D views of the different parameter variations
(see Figure 4.11 D), we can see that the volumes produced by the SIRT algorithm with
less than 250 iterations result in low contrast between cell walls and voids. Starting
from approximately 350 iterations, the contrast converges to the FDK reference volume.
Dynamic Volume Lines gives a quick insight into the contrast changes in the ensemble by
displaying the grey values as lines. It would be very difficult to distinguish the contrast
changes without Dynamic Volume Lines. Since doubling the number of iterations also
means doubling the required reconstruction time, we can conclude that we can stop the
reconstruction at 400 iterations without a major loss of accuracy.

When selecting regions with a low importance value between 0 and 0.001 (low variation
of intensities), the ring artifacts are selected, as shown in Figure 4.12 F. This indicates
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Figure 4.10: (A) Histogram heatmap of the foam volumes ensemble showing most
intensities in the lower range. (B) 1D Hilbert line plots zoom-in, enabling a detailed
comparison of the foam volumes, reconstructed with different SIRT iteration parameters.
(C) Functional Boxplots of the 1D Hilbert line plots in (B).

that the SIRT iterations do not suppress the ring artifacts. Both FDK and SIRT are
affected by them in exactly the same way. The importance function could therefore be
used to detect such artifacts. They are the only features in the volumes, which show
only little variation with different reconstruction parameters. Figure 4.12 G conveys in
the Hilbert line plots that in the lower intensity range there is in general a low variation
in all the volumes. There is even less variation in the highlighted regions of the ring
artifacts. We therefore hypothesize that there is potential to use the local ensemble
variation to develop a ring-artifact reduction algorithm for the reconstructed volumes.
This is an insight that would not have been possible without the knowledge gained from
the analysis with Dynamic Volume Lines.
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Figure 4.11: (D) 3D rendering views of regions with selected high importance, coinciding
with the foam cell walls. (E) Regions of high importance as in (D), selected in the 1D
Hilbert line plots.
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Figure 4.12: (F) 3D rendering views of regions with selected low importance, coinciding
with the ring artifacts. (G) Regions of low importance as in (F), selected in the 1D
Hilbert line plots.
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4.5.3 Implementation and Performance Measurements

The experiments were performed on a desktop machine with an Intel(R) Core(TM)
i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce GTX 1080 GPU with 8 GB RAM.
The Dynamic Volume Lines were implemented in C++. ITK 4.9 [JMIC15] has been
used to perform basic image processing, to load the datasets, and to generate the Hilbert
curves [Tus11]. The 3D rendering views were calculated with VTK 7.0 [SML06]. The
histogram heatmap and the 1D Hilbert line plots were built with the QCustomPlot 2.0
library [Eic]. The scaling widget and the GUI in general were implemented in Qt 5.8
[Gro]. The calculation time scales with the size of the ensemble and the size of the
individual volumes, whereby the generation of the Hilbert curve has the largest share
in the calculation time. However, the generation of the Hilbert curve can be carried
out before the actual analysis, so that large volumes can also be explored interactively
afterwards. Computing the Hilbert curves, for example, for 16 datasets with a size of
64×64×64 voxels (see Figure 4.3) takes approximately 12 seconds. This includes creating
the nonlinear scaling, generating the segment tree, and the initial rendering of the charts.
Dragging and zooming within the charts work in real-time. The performance of selecting
1D Hilbert line plots and rendering the corresponding 3D views depends on the number
of chosen line segments and on the number of chosen volumes, but typically takes less
than five seconds in our cases.

4.6 Conclusion and Future Work
In this chapter we present Dynamic Volume Lines, a tool for the interactive visual
analysis and comparison of ensembles of 3D volumes using 1D Hilbert line plots. Volumes
are linearized along a space-filling Hilbert curve. An aggregate overview visualization for
volume ensembles is introduced as a histogram heatmap, which encodes the intensity
frequencies. A nonlinear scaling is provided to emphasize regions with high local variations
and to optimally utilize the available screen space. The scaling is illustrated in an
interactive scaling widget. Using an artificial specimen from simulated XCT, we investigate
the general usefulness of the tool in detecting local variations in the ensemble. On a
real-world TLGI-XCT foam specimen we show that our importance function, based
on local variations, can be used to detect structures such as cell walls, and to discover
unwanted ring artifacts. Our domain-expert collaborators were very positive about the
possibility to compare multiple volumes at once, as they previously had no comprehensive
tool available to support this analysis scenario. They also positively mentioned the
guidance towards interesting regions, i.e., areas with high local variations. It is important
for them to be able to investigate selected regions in more detail, and to retain the
relation to the spatial domain. This allows them to draw conclusions and to gain insights
for adaptations in their algorithm development. In general, the concept of representing
an ensemble of volumes as nonlinear 1D Hilbert line plots is not limited to 3D space, but
can also be applied to (abstract) n-dimensional spaces.
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CHAPTER 5
Summary and Conclusion

Industrial 3D X-ray computed tomography is an excellent imaging technique to char-
acterize advanced composites with respect to structural composition and defects, as it
provides high-resolution images and reveals very small structures inside the specimen
without destroying it. However, it also generates large amounts of data at the same
time. Analyzing these data is often tedious and difficult for the experts. By using mean-
ingful and understandable visualizations, the XCT datasets can be analyzed efficiently
and profoundly. The interaction of the various internal material features (e.g., fibers,
pores, inclusions) can be better understood and existing material configurations can be
optimized or new ones created.

In this work, the application scenarios fiber characterization, porosity-value determination,
and feature comparison in multiple volumes were investigated, since these are typical
for the handling of advanced composite materials in the field of non-destructive testing
using XCT. Three novel visual analysis methods were presented, which address the
domain-specific challenges in the respective application areas. The first two visualization
techniques deal with the material-specific issues of characterizing fibers and determining
porosity in fiber-reinforced polymers (FRPs). The third visualization technique follows
a general approach in order to compare several different volumes and their interesting
features. All these visualization contributions have in common that their linked views
and interaction concepts create tailored visual analysis systems for special application
scenarios in material science. In this context, Heinzl and Stappen [HS17] have identified
four high-level challenges of visual computing that need to be addressed for boosting
research endeavors in material science. In the following, the individual visualization
contributions of this thesis address the high level challenges of visual computing to
support material science:

• Interactive exploration and visual analysis of fibers in advanced com-
posites. An in-depth analysis of fiber characteristics, such as position, length and
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orientation, is of great interest, as regularities can be derived and the material
properties can be estimated. For example, these findings can then be used in finite
element simulations. A research prototype, which provides a simple, detailed, and
comprehensive visual analysis of FRPs based on their individual fiber character-
istics and the correlations between the different characteristics, is discussed in
Chapter 2. By calculating derived fiber characteristics based on the preprocessed
data (e.g., fiber start and end points), overview visualizations can be realized,
which support a fast and easy evaluation of fiber lengths and fiber orientations in
XCT datasets. With the linked views PCP, SPLOM, Fiber Class Explorer, and
3D volume rendering of the fiber dataset, fibers can be highlighted, divided into
classes according to their specific characteristics, and statistically evaluated. Thus,
correlations and hidden patterns can be derived and identified among the different
fiber characteristics.
The interplay of these views serves as an example of how the Quantitative Data
Visualization Challenge can be met. In addition, the Blob and Fiber Metadata
visualizations emphasize the shape of the different fiber layers and facilitates the
detection of outliers in advanced composite materials. All these visualizations with
their interconnected interaction possibilities, demonstrate how the Integrated Visual
Analysis Challenge can be tackled. In contrast to standard software solutions, the
presented visualization methods enable domain experts to cope with the given high
information content and allows them to efficiently explore and analyze the fibers in
XCT datasets.

• Visual analysis and evaluation of porosity in fiber-reinforced polymers.
An accurate determination of the porosity value for advanced composite materials
with high quality requirements is essential in order to produce as little rejects
as possible. To determine the porosity value in FRP specimens scanned with
XCT, suitable image processing and segmentation algorithms are required. Various
combinations of image processing and segmentation algorithms and their different
parameter settings may lead to several hundreds of varying segmentation results.
Therefore it is difficult to find a suitable segmentation pipeline and its appropriate
parameters. A visualization tool to systematically evaluate the results of different
segmentation pipelines is discussed in Chapter 3. It enables the user conveniently
to link and combine several image processing and segmentation filters to a pipeline
by drag and drop. The behavior of the individual filters can be influenced by
their parameter settings. All filter parameters of a segmentation pipeline define
a parameter space that can be sampled with different granularity. As soon as
the assembly of the segmentation pipelines is finished, they are processed in an
automatic batch process. In addition to the segmentation masks, further derived
results such as the porosity value, the segmentation pipeline runtime, and the
Dice-coefficients are computed. In an intuitive visual analysis process the results
can then be explored. To this end, the segmentation results are first presented
with overview visualizations and only on demand with more detailed analysis
visualizations. The overview visualizations allow the user to compare and preselect
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the data. The selected segmentation results are then transferred to a SPLOM. It
allows the user to examine the results in more detail and enables trade-off analyses
between the input parameters and the derived results. On an even more-detailed
level, selected segmentation results can be compared with 2D and 3D comparative
visualizations on a pixel/voxel level in dependence of their different parameter
settings.
From the assembly of pore segmentation pipelines by drag and drop to the analysis
of the results with linked views at increasing levels of detail, this visualization
system tailored to pore analysis shows how the Integrated Visual Analysis Challenge
can be met. The visualizations Overview Comparative Matrix, SPLOM with popup
preview, PRSs, and the comparative 2D slice and 3D rendering views, address
the Quantitative Data Visualization Challenge. These visual knowledge discovery
methods allow domain experts to efficiently analyze and to statistically evaluate the
segmentation results along with the corresponding input parameters and to classify
segmentations into meaningful and correct ones. The Visual Debugger Challenge is
partially met using the Overview Comparative Matrix (in deviation mode) and the
SPLOM, which enable the user to quantitatively analyze the results of assembled
segmentation pipelines. Both visualization techniques depict the deviation of the
porosity value from the reference porosity value of the individual segmentation
pipelines respectively the different parameter settings through a diverging cool-
to-warm perceptually-uniform color map. Algorithms or parameterizations that
lead to inappropriate or incorrect pore segmentations can be quickly discarded,
but at the same time useful segmentations are indicated. Currently, there are no
indications on how an analysis can be improved or suggestions which algorithms
or segmentation pipelines are suitable for a specific task. The SPLOM with the
popup preview and the 2D slice and 3D rendering views cover partial aspects of
the Interactive Steering Challenge. These visualization techniques can be used to
determine if the parameter space of a segmentation pipeline has been sampled with
sufficient accuracy, or if the parameters need to be further refined and the results
of the segmentation pipeline need to be recalculated. Information on how a specific
algorithm or a certain parameterization influences the final result, e.g., already
during the assembly of a segmentation pipeline, is currently not provided.

• Visual comparison of interesting features in 3D volumes. XCT for non-
destructive testing in general, uses different reconstruction or image processing
algorithms to improve the data quality, e.g., by removing artifacts or reducing
noise. The different parameter settings of the algorithms generate different XCT
datasets, which differ slightly in their image quality. The simultaneous comparison
and evaluation of the data quality is only insufficiently achievable with conventional
two-dimensional methods and varies from expert to expert. Chapter 4 discusses a
visualization technique, which allows the user to compare and evaluate interesting
features simultaneously in an ensemble of XCT datasets with subtle differences.
For this purpose, the intensities of the 3D volumes are traversed and extracted
along a space-filling Hilbert curve or a simple scan line curve and presented as 1D
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line plots. This ensures that each traversed voxel can be directly compared to one
of its neighbor voxels and each voxel position is compared with the same voxel
position in the other datasets of the ensemble. Based on the intensity variations in
the ensemble, a nonlinear scaling of the 1D line plots is performed. The nonlinear
scaling expands interesting regions with high intensity variations and compresses
uninteresting regions with low intensity variations. The available screen space is
effectively utilized and the user can concentrate on the areas with high variations
in the ensemble. Based on the nonlinear scaling, the tool provides an overview
visualization in the form of a histogram heatmap of the intensity frequencies, which
is replaced by the detailed 1D line plots when zooming in. At each level of detail, the
scaling widget emphasizes the local ensemble variations. The Functional Boxplots
serve as an aggregated visualization to give a statistical view on the ensemble
variations. The interaction concept of brushing and linking allows users, e.g., to
select regions with high ensemble variation in the 1D line plots and to display the
affected voxels in the 3D spatial context.
The interactive 2D views with the histogram heatmap, the 1D line plots with the
Functional Boxplots, together with the 3D views of the volumes, provide a tailored
tool for exploring and analyzing interesting features in a volume ensemble and
demonstrate how to cope with the Integrated Visual Analysis Challenge. Due to
the abstract representation of XCT volumes as 1D line plots, the intensities are
quantifiable. This is because small intensity differences can be better perceived by
positional encoding than by color encoding. As a result, the domain experts are
able to perform a detailed and efficient analysis of interesting regions in an ensemble
of XCT volumes and to find and evaluate repeating patterns in the data such as
artifacts or noise. The approaches of traversing and extracting the intensities of 3D
volumes along a space-filling curve and the nonlinear scaling of the 1D line plots to
cluster (compress) uninteresting regions, target the Quantitative Data Visualization
Challenge.

During the close collaboration with material experts in the field of NDT using XCT
over the past seven years, it became clear that visual computing is essential for material
science, e.g., in the characterization, development, and inspection process. Only with
suitable visual analysis techniques, the generated XCT data can be efficiently evaluated
and the questions from material science can be answered. Standard software tools for
visual analysis can be used only to a limited extent, because material systems, material
requirements, inspection methods, and acquisition systems are constantly evolving. For
this reason, specific visual analysis tools are necessary. The increasing number of
contributions to visualization and visual analysis at conferences in the field of material
science such as the Conference on Industrial Computed Tomography [iCT] confirms that
this demand is already being addressed.

The visual analysis methods of this thesis demonstrate, how the workflows of the experts
are improved and supported by simple, fast, and well-grounded analysis processes to
provide new insights in the field of material characterization with XCT. During the
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development of the presented systems it turned out that it is essential to understand the
problems of the material scientists. To this end, in several cases weekly meetings with
the experts were necessary, where the problems were iteratively defined and analyzed
with increasing precision. It has been important to bring the terminologies from both
scientific domains, i.e., visual computing and material science, closer together. During
the meetings it turned out that the software solutions of the domain experts offered only
a limited spectrum of visualization concepts and consequently they were not familiar
with more sophisticated visualizations. In order to enable a knowledge exchange, the use
of hand drawn mockups and software prototypes with basic functionalities proved to be
very helpful. With them, the visualization and interaction ideas can be discussed in a
target-oriented fashion. The proposed ideas were also discussed with visual computing
experts, who either extended them further or rejected them completely. With the help of
this multi-stage iterative design process all visualization contributions of this thesis were
developed. The presented tools were integrated as software modules into the open source
framework open_iA [FWS+19]. The achieved results were evaluated together with our
project partners from the aerospace and automotive industry and the domain experts
for non-destructive testing of the University of Applied Sciences Upper Austria - Wels
Campus. The developed visualization techniques were tested using real-world XCT scans
of advanced composites and artificial specimens generated by XCT simulation.

The numerous discussions with the material experts in the course of this work have
shown, that “transparent” algorithms and visual analysis systems for finding meaningful
parameter settings are of great interest for material scientists in order to optimize the
data evaluation. At the beginning of this thesis, material scientists used simple pore
segmentation algorithms with no or only a few parameters because they were fast and
the results were easy to understand. However, as material systems became increasingly
complex and the demands on the quality of material systems increased, these simple
algorithms led to inaccurate or incorrect results. Therefore, complex algorithms were
used more and more. The algorithms often achieve very good results, but only after
the correct parameter settings have been found. This is usually time-consuming and
challenging because the algorithm and its parameters must be understood in detail. Only
then different parameter settings can be tested and the results evaluated. This situation
indicates how important it will be in the future to provide visual analysis systems, which
explain the processes in "black box" algorithms and present the results of the different
parameter settings in a comprehensive way.
In the context of complex algorithms, deep learning plays an important role. This
research area of machine learning has attracted a lot of attention in recent years, includ-
ing material science, which aims to achieve better results in the future through neural
networks than with currently used complex algorithms, e.g., in the area of object recogni-
tion/segmentation. The provision of sufficiently large training sets for the wide variety
of material systems can be seen as a future challenge. At the same time, deep learning
requires from visual computing to create explainable artificial intelligence systems with
suitable visualization techniques. As another future area of visual computing, augmented
and virtual reality applications can be identified. In these areas, suitable visual analysis
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systems and interaction methods have to be investigated and developed, in order to
support material science, e.g., for the inspection of components. Finally, due to the
increasing size of XCT datasets, the problem of clutter, occlusion, and rendering time is
still considered as a future challenge in the research area of visual computing.
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Appendix

In the following, the evaluation questionnaires of the research prototypes FiberScout (see
Chapter 2) and PorosityAnalyzer (see Chapter 3) are listed.
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Evaluation Questionnaire - FiberScout 1

1 Introduction

Pacific Visualization Symposium (PacificVis) 2014, 7th IEEE sponsored international visualization symposium.

of composite components up to now. In this evaluation questionnaire we will focus on the visualization and
advanced analysis of fiber reinforced polymers (FRP). Figure 1 shows an overview of the visualization tool.
Details of the tool will be introduced in later sections.

By analyzing the fiber characteristics of FRP specific questions are coming up. We discussed with domain
experts carefully and determined the following tasks, which also will be evaluated in this questionnaire:

• Task 1: Classification of fibers,

• Task 2: Visualization of fiber orientations,

• Task 3: Determination of fiber regions,

• Task 4: Visualization of regional information with the material characteristics.

Figure 1: An overview of the visualization tool.

FiberScout Evaluation Questionnaire

This  questionnaire  is  about  the  software  prototype  for  interactive  exploration  and  visual  analysis  of  fibrous
materials based on X-ray computed tomography (XCT) data. Your feedback will be part of a submission for the

XCT is the most promising method for non-destructive testing and fully three-dimensional characterization
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Evaluation Questionnaire - FiberScout 2

2 General Questions

1a. How often do you work with X-ray computed tomography (XCT) data?
2 Never 2 Annually 2 Monthly 2 Weekly 2 Daily

1b. How often do you explore XCT data using visual representations?
2 Never 2 Annually 2 Monthly 2 Weekly 2 Daily

1c. How many years of experience do you have with XCT metrology? years.

1d. Are you experienced with fiber reinforced polymers?
2 No experience 2 Introductory 2 Intermediate 2 Advanced 2 High level

1e. How many years of experience do you have with fiber reinforced polymers? years.

3 Clustering

When applying a fiber characterization pipeline (FCP) and a labeling filter to the original gray value XCT volume
data (see Figure 2a) we get a label image and a csv-file with individual label identification. The corresponding
fiber characteristics are given in the csv-file for each label. We then use these two datasets as input data for the
visualization tool. In this section we will focus on the classification of the fibers using parallel coordinates and
a scatter plot matrix.

3.1 Classification of fibers with parallel coordinates

Parallel coordinates (PC) is a visualization technique using n-dimensional geometry for the analysis of multi-
variate data. Unlike in the Cartesian coordinate system the axes in PC are set up parallel and equidistant to
each other. A point in n-dimensional space is represented using lines crossing the n parallel axes. The position
of the intersection on the ith axis corresponds to the value of the ith

multidimensional point is transformed to a polyline through the parallel axes.

In this software prototype PC are used to visualize and classify fiber characteristics. Figure 2b shows PC of
22656 fibers using the following material characteristics

• Label – the identification of a fiber;

• a11, a22, a33 – main elements of the orientation tensor of a fiber;

• Xm[µm], Y m[µm], Zm[µm] – 3D Cartesian coordinates of the middle point of a fiber;

• sL [µm] – the straight length of a fiber

as dimensional information.

The interaction technique of brushing and linking is used to explore the data set. With PC the user is able
to select a range of interest for each fiber property by brushing through the corresponding axis (e.g., the red
rectangles along the axes in Figure 2b) to define a new class. The selected fibers are then highlighted in the PC
as well as in the 3D view (see Figure 2c) and in the scatter plot matrix (linking, see Figure 4a).

(a) (b) (c)

Figure 2: (a) 3D view of the original gray value volume image. (b) View of a parallel coordinates system. (c)
View of a real-time rendering of the selected fibers.

coordinate  of  the  point.  Finally,  each
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Evaluation Questionnaire - FiberScout 3

2a. How good can you identify the fiber structure in Figure 2a?
2 poor 2 fair 2 average 2 good 2 excellent

2b. How good can you identify the fiber structure in Figure 2c?
2 poor 2 fair 2 average 2 good 2 excellent

2c. How would you evaluate the visualization technique of linking and brushing?
2 poor 2 fair 2 average 2 good 2 excellent

A new class will be created with the selected fibers. The user is able to specify the name and the color
of the new class. The created classes are then listed in the class explorer (see Figure 3a). Additionally, the
number of fibers in the class (Count) and the percentage of the fiber content (Percent) are calculated as
header information. An element explorer that contains the Minimal, Maximal and Average value of all fiber
characteristics is also computed for each class.

According to fiber orientation and the spatial position in x-direction of the fibers we manually defined 5
classes of fibers (Figure 3a). Figure 3b represents extracted statistical information from the element explorer
of the fiber characteristics of Class 4 highlighted in Figure 3a. By clicking on a Label or a Class in the class
explorer the user is able to visualize a single fiber or a cluster of fibers (Figure 3c) in the 3D view as well as in
PC and in the scatter plot matrix. Figure 3d shows the 3D view of a direct volume rendering based on color
transfer function of all the manually defined classes (Figure 3a).

(a) (b)
(c) (d)

Figure 3: (a) Meta information of the manually classified classes. (b) Extracted element table of the fiber
characteristics of Class 4. (c) Direct volume rendering of the Class 4. (d) Direct volume rendering of
all classes.

3a. How useful is the meta information in Figure 3a?
not at all 2—2—2—2—2 very useful

3b. How useful is the statistical information in Figure 3b?
not at all 2—2—2—2—2 very useful

3c. Can you identify the fiber classes in Figure 3d?
2 poor 2 fair 2 average 2 good 2 excellent

3d. Remarks concerning classification with parallel coordinates (benefits/drawbacks):

3.2 Classification of fibers with scatter plot matrix

In addition to parallel coordinates we use a scatter plot matrix (SPM) to visualize and reveal relationships such
as dependencies, patterns and even outliers among all of the fiber characteristics. Further the SPM serves as a
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(a)

(b) (c)

Figure 4: (a) View of a scatter plot matrix with the interaction technique brushing and linking. (b) Scatter plot
of the fiber properties a33 and Xm. The points are color coded according to the clusters in Figure 3a.
(c) Scatter plot of the fiber properties Xm and Zm color coded according to the clusters in Figure 3a.

refinement of the rough PC selection.

A SPM consists of n(n−1)/2 scatter plots organized as a matrix where only the part below the main diagonal
is filled to avoid redundancy. A Histogram of each fiber characteristic is shown in the main diagonal. Under this

view of the selected scatter plot is displayed. Figure 4a shows a SPM with the same fiber characteristics as in
Figure 2b. The selected small scatter plot under the main diagonal is marked in gray.

In the enlarged view and in the small charts it is possible to select the black points by drawing rectangles
which will turn them into red ones (brushing). The selections done in the enlarged view will be applied to all
other scatter plots, the PC and the 3D view (linking). The enlarged view in Figure 4a shows the scatter plot of

main diagonal a scatter plot is drawn for each pair of the characteristics. In the upper right corner, an enlarged
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the fiber characteristics: a33 - the orientation tensor of a fiber in z-direction and Xm - the x coordinate of the
fiber middle point. The red points represent the currently selected fibers in PC. Figure 4b, 4c display the same
data color coded to the manually defined classes presented in Figure 3a.

4a. Can you identify fiber classes in Figure 4a?
2 poor 2 fair 2 average 2 good 2 excellent

4b. Can you identify fiber classes in Figure 4b?
2 poor 2 fair 2 average 2 good 2 excellent

4c. Can you identify outliers in Figure 4b?
2 poor 2 fair 2 average 2 good 2 excellent

4d. Can you identify dependencies between Figure 4b and Figure 4c?
2 poor 2 fair 2 average 2 good 2 excellent

4e. How would you evaluate the method of clustering fibers with parallel coordinates?
2 poor 2 fair 2 average 2 good 2 excellent

4f. How would you evaluate the method of clustering fibers with scatter plot matrix?
2 poor 2 fair 2 average 2 good 2 excellent

4g. Remarks concerning classification with scatter plot matrix (benefits/drawbacks):

4 Fiber Orientation Distribution

To present the fiber orientation, spherical coordinates are used. Figure 5a shows the construction of the orien-
tations in the Cartesian coordinates System. θ represents the polar angle measured from the zenith z-direction.
The azimuth angle φ passes through the origin in xy-plane and is measured from the x-direction. Because of the
symmetry it is possible to depict all fiber orientations on a half sphere by specifying θ ∈ [0, π/2] and φ ∈ [0, 2π).
We then discretize the northern half sphere with a resolution of 3 degrees and compute the frequency for each
discretized direction, which builds up the fiber orientation distribution (FOD). The azimuthal projection is
later used to generate the 2D image of the FOD. Figure 5b shows the global FOD of the original data set. The
annotations around the outer circle represent the azimuthal angle and the annotations inside represent the polar
angle. In addition to the global FOD, an FOD may be computed for each manually defined class. For example
Figure 5c displays the FOD of Class 4 in Figure 3a.

(a) (b) (c)

Figure 5: (a) Construction of the fiber orientation. (b) Global fiber orientation distribution (FOD) of all fibers.
(c) FOD of Class4 in Figure 3a.

5a. Can you identify the main fiber orientation in Figure 5b?
2 poor 2 fair 2 average 2 good 2 excellent

5b. Can you identify the main fiber orientation of Class 4 in Figure 5c?
2 poor 2 fair 2 average 2 good 2 excellent
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5c. How would you evaluate the method of FOD?
2 poor 2 fair 2 average 2 good 2 excellent

Besides the fiber orientation distribution, the visualization of the real fiber orientations in 3D is also im-
plemented. We developed a spherical color map (see Figure 6a) that maps the 3D space orientation in every
direction. Figure 6b shows you the direct volume rendering of the fibers according to fiber orientation color
coded according to the spherical color map.

(a)

(b)

Figure 6: (a) The spherical color map. (b) Direct volume rendering of the fibers according to fiber orientation
color coded with the spherical color map.

6a. Can you identify the color coding of the spherical color map in Figure 6a?
2 poor 2 fair 2 average 2 good 2 excellent

6b. Can you identify fiber orientations in Figure 6b based on the spherical color map?
2 poor 2 fair 2 average 2 good 2 excellent

6c. Can you identify the fiber classes in Figure 6b?
2 poor 2 fair 2 average 2 good 2 excellent

6d. Remarks concerning to fiber orientation distribution (benefits/drawbacks):
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5 Blob Visualization

Groups of fibers with similar characteristics - fiber classes classified with parallel coordinates and scatter plot
matrix are visualized in the form of one blob or more. A blob is represented as a contoured surface surrounding
all fibers of a class. The contoured surface provides an overview of the cluster and shows its spatial position
in the data. If two or more blobs are drawn together it is possible to separate the clusters from each other.
Figure 2a shows the original gray value volume data. Figure 7b shows the blobs according to the defined classes.

(a)

(b)

Figure 7: (a)Original gray value volume data. (b) Blob visualization of the fiber classes determined by fiber
orientation.

7a. Can you identify the fiber classes of Figure 7b in comparison with Figure 7a?
2 poor 2 fair 2 average 2 good 2 excellent

7b. Remarks concerning blob visualization (benefits/drawbacks):
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6 Metadata Visualization

A meta-image was generated using regional information of material characteristics (fiber characteristics). We
first discretize the original dataset with a user specified discretization-factor to larger cells. The average of the
selected fiber characteristics is calculated for each cell for all fibers crossing through this cell. These average
values are then used to generate the meta-image.

In our example the voxel size of the original dataset is 1µm; the cell size we defined for the regional information

gray value image and color coded according to fiber orientations. Blue represents the y-direction and orange
the z-direction. Figure 8b displays a slice view of the meta-image with the fiber characteristic θ being in the
yz-plane.

(a)
(b)

Figure 8: Views of meta-image color coded according to fiber orientation. Blue represents the y-direction and
orange the z-direction. (a) 3D view of the meta-volume. (b) A slice view of the meta-volume with the
fiber characteristics θ being in the yz-plane.

8a. Can you identify fiber classes in Figure 8a?
2 poor 2 fair 2 average 2 good 2 excellent

8b. Can you identify fiber orientations in Figure 8a?
2 poor 2 fair 2 average 2 good 2 excellent

8c. Can you identify fiber orientations in Figure 8b?
2 poor 2 fair 2 average 2 good 2 excellent

8g. Remarks concerning metadata visualization (benefits/drawbacks):

is 30μm using a discretization-factor of 40. Figure 8a shows the 3D view of a meta-image overlaid on the original
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